Skip to main content

Finite-Range Effects in Li-Cs-Cs Efimov Resonances

  • Chapter
  • First Online:
Heteronuclear Efimov Scenario in Ultracold Quantum Gases

Part of the book series: Springer Theses ((Springer Theses))

  • 371 Accesses

Abstract

In this chapter we investigate departures from the universal behavior of weakly-bound LiCsCs three-body states due to finite-range effects in the heteronuclear Efimov scenario. The presented Born-Oppenheimer model illuminates the important role of finite-range physics in the heavy-heavy-light system with intuitive clarity. In the following experiments we realize the Li-Cs-Cs Efimov scenario with positive Cs-Cs scattering length for the first time, in this way pioneering the understanding of its influence on the three-body physics. Surprisingly, the resulting Efimov states are almost independent of molecular forces that govern chemical binding of atoms into molecules—the binding of the three atoms is purely quantum-mechanical and the three-body system becomes universal. Finally, we model two-body interactions between individual atoms by van der Waals tails of molecular potentials, and explain the previously observed deviations from the universal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There exist extremely good approximations to them, which is the exact source of the universality in few-body physics [2].

  2. 2.

    This is analogous to the hyperspherical formalism, where the couplings between different scattering channels were neglected in order to obtain the single channel representation (see Sect. 3.2.1, Eqs. (3.9) and (3.10)).

  3. 3.

    Note that the length variable R used in the hyperspherical and BO approach denotes the hyperradius and the distance between the heavy particles, respectively. This implies a different definition of the reduced mass, as discussed in Sect. 3.2.1.

  4. 4.

    We do not consider the Li-Li vdW interactions, since in our experiments the fermionic Li is prepared in a single spin state, which does not undergo s-wave scattering.

  5. 5.

    In this expression the CsCs superscript is omitted for clearer presentation, i.e. \( r_\mathrm {vdW}=r_\mathrm {vdW}^\mathrm {CsCs}\).

  6. 6.

    Larger values are limited by the finite grid size of the utilized numerical method.

  7. 7.

    We thank C. Greene from Purdue University and Y. Wang from Kansas State University for performing these and all the following calculations with Lennard-Jones potentials for us.

  8. 8.

    We use the fitted absolute rates for the different data sets \(\gamma ^{(a)}_{120} =2.26\), \( \gamma ^{(b)}_{120}=1.44 \), \( \gamma _{450} =0.73\) so that the LJ and zero-range models can be directly compared. See Sect. 3.4.4.

  9. 9.

    The recording of a single three-body recombination spectrum can take a few days of continuous operation.

  10. 10.

    Even more provocative and pictorial comparison, although not strictly correct, is a continuous transition from a two-body into a three-body bound state.

  11. 11.

    We thank C. Greene for suggesting this idea to us.

References

  1. J. Ulmanis, S. Häfner, R. Pires, E.D. Kuhnle, Y. Wang, C.H. Greene, M. Weidemüller, Phys. Rev. Lett. 117, 153201 (2016)

    Article  ADS  Google Scholar 

  2. E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. L.H. Thomas, Phys. Rev. 47, 903 (1935)

    Article  ADS  Google Scholar 

  4. S.A. Coon, B.R. Holstein, Am. J. Phys 70, 513 (2002)

    Article  ADS  Google Scholar 

  5. A.M. Essin, D.J. Griffiths, Am. J. Phys 74, 109 (2006)

    Article  ADS  Google Scholar 

  6. J.P. D’Incao, C.H. Greene, B.D. Esry, J. Phys. B: At. Mol. Opt. Phys. 42, 044016 (2009)

    Article  ADS  Google Scholar 

  7. M. Berninger, A. Zenesini, B. Huang, W. Harm, H.-C. Nägerl, F. Ferlaino, R. Grimm, P.S. Julienne, J.M. Hutson, Phys. Rev. Lett. 107, 120401 (2011)

    Article  ADS  Google Scholar 

  8. S. Knoop, J.S. Borbely, W. Vassen, S.J.J.M.F. Kokkelmans, Phys. Rev. A 86, 062705 (2012)

    Article  ADS  Google Scholar 

  9. S. Roy, M. Landini, A. Trenkwalder, G. Semeghini, G. Spagnolli, A. Simoni, M. Fattori, M. Inguscio, G. Modugno, Phys. Rev. Lett. 111, 053202 (2013)

    Article  ADS  Google Scholar 

  10. B. Huang, K.M. O’Hara, R. Grimm, J.M. Hutson, D.S. Petrov, Phys. Rev. A 90, 043636 (2014)

    Article  ADS  Google Scholar 

  11. J. Wang, J.P. D’Incao, B.D. Esry, C.H. Greene, Phys. Rev. Lett. 108, 263001 (2012)

    Article  ADS  Google Scholar 

  12. P. Naidon, S. Endo, M. Ueda, Phys. Rev. A 90, 022106 (2014)

    Article  ADS  Google Scholar 

  13. P. Naidon, S. Endo, M. Ueda, Phys. Rev. Lett. 112, 105301 (2014)

    Article  ADS  Google Scholar 

  14. C. Chin (2011), arXiv:1111.1484

  15. P. Naidon, E. Hiyama, M. Ueda, Phys. Rev. A 86, 012502 (2012)

    Article  ADS  Google Scholar 

  16. P.K. Sørensen, D.V. Fedorov, A.S. Jensen, N.T. Zinner, Phys. Rev. A 86, 052516 (2012)

    Article  ADS  Google Scholar 

  17. P.K. Sørensen, D.V. Fedorov, A.S. Jensen, N.T. Zinner, Phys. Rev. A 88, 042518 (2013)

    Article  ADS  Google Scholar 

  18. R. Schmidt, S. Rath, W. Zwerger, Eur. Phys. J. B 85, 1 (2012)

    Article  Google Scholar 

  19. Y. Wang, J. Wang, J.P. D’Incao, C.H. Greene, Phys. Rev. Lett. 109, 243201 (2012)

    Article  ADS  Google Scholar 

  20. J. Wang, J.P. D’Incao, Y. Wang, C.H. Greene, Phys. Rev. A 86, 062511 (2012)

    Article  ADS  Google Scholar 

  21. Y. Wang, P.S. Julienne, Nat. Phys. 10, 768 (2014)

    Google Scholar 

  22. P.K. Sørensen, D.V. Fedorov, A.S. Jensen, N.T. Zinner, J. Phys. B: At. Mol. Opt. Phys. 46, 075301 (2013)

    Article  ADS  Google Scholar 

  23. M. Thøgersen, D.V. Fedorov, A.S. Jensen, Europhys. Lett. 83, 30012 (2008)

    Article  ADS  Google Scholar 

  24. L. Platter, C. Ji, D.R. Phillips, Phys. Rev. A 79, 022702 (2009)

    Article  ADS  Google Scholar 

  25. P. Naidon, M. Ueda, C. R. Phys. 12, 13 (2011)

    Article  ADS  Google Scholar 

  26. A. Kievsky, M. Gattobigio, Phys. Rev. A 87, 052719 (2013)

    Article  ADS  Google Scholar 

  27. H.-W. Hammer, A. Nogga, A. Schwenk, Rev. Mod. Phys. 85, 197 (2013)

    Article  ADS  Google Scholar 

  28. B. Huang, L.A. Sidorenkov, R. Grimm, J.M. Hutson, Phys. Rev. Lett. 112, 190401 (2014)

    Article  ADS  Google Scholar 

  29. M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L.P.H. Schmidt, M. Schöffler, A. Czasch, W. Schöllkopf, R.E. Grisenti, T. Jahnke et al., Science 348, 551 (2015)

    Article  ADS  Google Scholar 

  30. M. Gattobigio, A. Kievsky, Phys. Rev. A 90, 012502 (2014)

    Article  ADS  Google Scholar 

  31. R.J. Wild, P. Makotyn, J.M. Pino, E.A. Cornell, D.S. Jin, Phys. Rev. Lett. 108, 145305 (2012)

    Article  ADS  Google Scholar 

  32. R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E.D. Kuhnle, M. Weidemüller, Phys. Rev. Lett. 112, 250404 (2014)

    Article  ADS  Google Scholar 

  33. S.-K. Tung, K. Jiménez-García, J. Johansen, C.V. Parker, C. Chin, Phys. Rev. Lett. 113, 240402 (2014)

    Article  ADS  Google Scholar 

  34. D. Petrov, in Many-Body Physics with Ultracold Gases: Lecture Notes of the Les Houches Summer School: Volume 94, July 2010, ed. by C. Salomon, G.V. Shlyapnikov, and L.F. Cugliandolo (OUP Oxford, 2013), chapter 3, “The Few-atom Problem”

    Google Scholar 

  35. R.K. Bhaduri, A. Chatterjee, B.P. van Zyl, Am. J. Phys 79, 274 (2011)

    Article  ADS  Google Scholar 

  36. A.C. Fonseca, E.F. Redish, P. Shanley, Nucl. Phys. A 320, 273 (1979)

    Article  ADS  Google Scholar 

  37. D.S. Petrov, C. Salomon, G.V. Shlyapnikov, J. Phys. B: At. Mol. Opt. Phys. 38, S645 (2005)

    Article  ADS  Google Scholar 

  38. B. Marcelis, S.J.J.M.F. Kokkelmans, G.V. Shlyapnikov, D.S. Petrov, Phys. Rev. A 77, 032707 (2008)

    Article  ADS  Google Scholar 

  39. M.A. Efremov, L. Plimak, B. Berg, M.Y. Ivanov, W.P. Schleich, Phys. Rev. A 80, 022714 (2009)

    Article  ADS  Google Scholar 

  40. Y. Nishida, S. Tan, Phys. Rev. Lett. 101, 170401 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Zhu, S. Tan, Phys. Rev. A 87, 063629 (2013)

    Article  ADS  Google Scholar 

  42. Y. Nishida, S. Tan, Phys. Rev. A 79, 060701 (2009)

    Article  ADS  Google Scholar 

  43. F.F. Bellotti, T. Frederico, M.T. Yamashita, D.V. Fedorov, A.S. Jensen, N.T. Zinner, J. Phys. B: At. Mol. Opt. Phys. 46, 055301 (2013)

    Article  ADS  Google Scholar 

  44. P.W. Atkins, R.S. Friedman, Molecular Quantum Mechanics (Oxford University Press, 2000)

    Google Scholar 

  45. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-relativistic Theory (Pergamon Press, 1991)

    Google Scholar 

  46. A. Derevianko, J.F. Babb, A. Dalgarno, Phys. Rev. A 63, 052704 (2001)

    Article  ADS  Google Scholar 

  47. S.G. Porsev, A. Derevianko, J. Chem. Phys. 119, 844 (2003)

    Article  ADS  Google Scholar 

  48. S.G. Porsev, M.S. Safronova, A. Derevianko, C.W. Clark, Phys. Rev. A 89, 022703 (2014)

    Article  ADS  Google Scholar 

  49. K.M. Jones, E. Tiesinga, P.D. Lett, P.S. Julienne, Rev. Mod. Phys. 78, 483 (2006)

    Article  ADS  Google Scholar 

  50. T. Köhler, K. Góral, P.S. Julienne, Rev. Mod. Phys. 78, 1311 (2006)

    Article  ADS  Google Scholar 

  51. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  52. B. Gao, Phys. Rev. A 58, 1728 (1998)

    Article  ADS  Google Scholar 

  53. G.F. Gribakin, V.V. Flambaum, Phys. Rev. A 48, 546 (1993)

    Article  ADS  Google Scholar 

  54. V.V. Flambaum, G.F. Gribakin, C. Harabati, Phys. Rev. A 59, 1998 (1999)

    Article  ADS  Google Scholar 

  55. M. Pillai, J. Goglio, T.G. Walker, Am. J. Phys 80, 1017 (2012)

    Article  ADS  Google Scholar 

  56. P. Giannozzi. Lecture notes (2014)

    Google Scholar 

  57. M. Berninger, A. Zenesini, B. Huang, W. Harm, H.-C. Nägerl, F. Ferlaino, R. Grimm, P.S. Julienne, J.M. Hutson, Phys. Rev. A 87, 032517 (2013)

    Article  ADS  Google Scholar 

  58. Y. Wang, C. Greene, Private Communication (2015)

    Google Scholar 

  59. D. Blume, Y. Yan, Phys. Rev. Lett. 113, 213201 (2014)

    Article  ADS  Google Scholar 

  60. M. Mudrich, S. Kraft, K. Singer, R. Grimm, A. Mosk, M. WeidemĂĽller, Phys. Rev. Lett. 88, 253001 (2002)

    Article  ADS  Google Scholar 

  61. C. Silber, S. GĂĽnther, C. Marzok, B. Deh, P.W. Courteille, C. Zimmermann, Phys. Rev. Lett. 95, 170408 (2005)

    Article  ADS  Google Scholar 

  62. J.P. D’Incao, B.D. Esry, Phys. Rev. Lett. 103, 083202 (2009)

    Article  ADS  Google Scholar 

  63. M. Mikkelsen, A.S. Jensen, D.V. Fedorov, N.T. Zinner, J. Phys. B: At. Mol. Opt. Phys. 48, 085301 (2015)

    Article  ADS  Google Scholar 

  64. D.S. Petrov, F. Werner, Phys. Rev. A 92, 022704 (2015)

    Article  ADS  Google Scholar 

  65. J.P. D’Incao, B.D. Esry, Phys. Rev. A 73, 030703 (2006)

    Article  Google Scholar 

  66. T. Lompe, T.B. Ottenstein, F. Serwane, A.N. Wenz, G. ZĂĽrn, S. Jochim, Science 330, 940 (2010)

    Article  ADS  Google Scholar 

  67. S. Nakajima, M. Horikoshi, T. Mukaiyama, P. Naidon, M. Ueda, Phys. Rev. Lett. 106, 143201 (2011)

    Article  ADS  Google Scholar 

  68. O. Machtey, Z. Shotan, N. Gross, L. Khaykovich, Phys. Rev. Lett. 108, 210406 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juris Ulmanis .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ulmanis, J. (2017). Finite-Range Effects in Li-Cs-Cs Efimov Resonances. In: Heteronuclear Efimov Scenario in Ultracold Quantum Gases. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-51862-6_4

Download citation

Publish with us

Policies and ethics