Skip to main content

Two-Body Interactions Between Li and Cs Atoms

  • Chapter
  • First Online:
  • 361 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter we investigate binary scattering properties of an ultracold mixture of Li and Cs atoms, on which the further exploration of few-body effects throughout the rest of this thesis is based. We start by briefly reiterating basic theoretical concepts of low-energy scattering. It is followed by a description of a typical experimental approach for producing an ultracold mixture of Li and Cs atomic gases. Finally, we present pioneering measurements of weakly bound LiCs Feshbach dimers and obtain LiCs singlet and triplet molecular potential curves with unprecedented accuracy with the help of a coupled-channels calculation. These results provide with currently the most complete knowledge of Li-Cs low-energy scattering properties and Feshbach resonances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If expressed in the appropriate units 1 \(\upmu \)K is equivalent to 20.8 kHz.

  2. 2.

    Note that in a harmonic trap the oscillation period is the same, independent at which potential energy the oscillation is started.

  3. 3.

    The prefactor C slightly depends on \( n_{\mathrm {Cs}} \) and \( n_{\mathrm {Li}}\). For atom losses, which do not exceed \({\approx }\)30% of the initial number of atoms, it does not change by more than 5 %.

  4. 4.

    We thank E. Tiemann from University of Hannover, Germany for performing these calculations for us.

References

  1. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Google Scholar 

  2. T.Köhler, K.Góral, P.S. Julienne, Rev. Mod. Phys. 78, 1311 (2006)

    Google Scholar 

  3. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Google Scholar 

  4. P. Massignan, M. Zaccanti, G.M. Bruun, Rep. Prog. Phys. 77 (2014)

    Google Scholar 

  5. E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006)

    Google Scholar 

  6. Y. Wang, J.P. D’Incao, B.D. Esry, in Advances in Atomic, Molecular, and Optical Physics, vol. 62, Chapter 1, Ultracold Few-Body Systems (2013)

    Google Scholar 

  7. M. Repp, R. Pires, J. Ulmanis, R. Heck, E.D. Kuhnle, M. Weidemüller, E. Tiemann, Phys. Rev. A 87, 010701 (2013)

    Google Scholar 

  8. R. Pires, Efimov resonances in an ultracold mixture with extreme mass imbalance, Ph.D. thesis, Heidelberg University (2014)

    Google Scholar 

  9. P.O. Fedichev, M.W. Reynolds, G.V. Shlyapnikov, Phys. Rev. Lett. 77, 2921 (1996)

    Google Scholar 

  10. J.P. D’Incao, B.D. Esry, Phys. Rev. Lett. 94, 213201 (2005)

    Google Scholar 

  11. J.P. D’Incao, B.D. Esry, Phys. Rev. Lett. 103, 083202 (2009)

    Google Scholar 

  12. M. Repp, Interspecies Feshbach resonances in an ultracold, optically trapped Bose-Fermi mixture of cesium and lithium, Ph.D. thesis, Heidelberg University (2013)

    Google Scholar 

  13. S.-K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, P.S. Julienne, Phys. Rev. A 87, 010702 (2013)

    Google Scholar 

  14. R. Pires, M. Repp, J. Ulmanis, E.D. Kuhnle, M. Weidemüller, T.G. Tiecke, C.H. Greene, B.P. Ruzic, J.L. Bohn, E. Tiemann, Phys. Rev. A 90, 012710 (2014)

    Google Scholar 

  15. K. Dieckmann, C.A. Stan, S. Gupta, Z. Hadzibabic, C.H. Schunck, W. Ketterle, Phys. Rev. Lett. 89, 203201 (2002)

    Google Scholar 

  16. T. Bourdel, J. Cubizolles, L. Khaykovich, K.M.F. Magalhães, S.J.J.M.F. Kokkelmans, G.V. Shlyapnikov, C. Salomon, Phys. Rev. Lett. 91, 020402 (2003)

    Google Scholar 

  17. C. Weber, G. Barontini, J. Catani, G. Thalhammer, M. Inguscio, F. Minardi, Phys. Rev. A 78, 061601 (2008)

    Google Scholar 

  18. O. Machtey, D.A. Kessler, L. Khaykovich, Phys. Rev. Lett. 108, 130403 (2012)

    Google Scholar 

  19. S. Zhang, T.-L. Ho, New J. Phys. 13, 055003 (2011)

    Google Scholar 

  20. A.Y. Khramov, A.H. Hansen, A.O. Jamison, W.H. Dowd, S. Gupta, Phys. Rev. A 86, 032705 (2012)

    Google Scholar 

  21. C. Klempt, T. Henninger, O. Topic, M. Scherer, L. Kattner, E. Tiemann, W. Ertmer, J.J. Arlt, Phys. Rev. A 78, 061602 (2008)

    Google Scholar 

  22. C.A. Regal, C. Ticknor, J.L. Bohn, D.S. Jin, Nature 424, 47 (2003)

    Google Scholar 

  23. M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin, J.H. Denschlag, R. Grimm, A. Simoni, E. Tiesinga et al., Phys. Rev. Lett. 94, 103201 (2005)

    Google Scholar 

  24. C. Ospelkaus, S. Ospelkaus, L. Humbert, P. Ernst, K. Sengstock, K. Bongs, Phys. Rev. Lett. 97, 120402 (2006)

    Google Scholar 

  25. R.A.W. Maier, C. Marzok, C. Zimmermann, P.W. Courteille, Phys. Rev. A 81, 064701 (2010)

    Google Scholar 

  26. C.-H. Wu, J.W. Park, P. Ahmadi, S. Will, M.W. Zwierlein, Phys. Rev. Lett. 109, 085301 (2012)

    Google Scholar 

  27. G. Zürn, T. Lompe, A.N. Wenz, S. Jochim, P.S. Julienne, J.M. Hutson, Phys. Rev. Lett. 110, 135301 (2013)

    Google Scholar 

  28. L. Huang, P. Wang, B.P. Ruzic, Z. Fu, Z. Meng, P. Peng, J.L. Bohn, J. Zhang, New J. Phys. 17, 033013 (2015)

    Google Scholar 

  29. J. Fuchs, C. Ticknor, P. Dyke, G. Veeravalli, E. Kuhnle, W. Rowlands, P. Hannaford, C.J. Vale, Phys. Rev. A 77, 053616 (2008)

    Google Scholar 

  30. S.T. Thompson, E. Hodby, C.E. Wieman, Phys. Rev. Lett. 95, 190404 (2005)

    Google Scholar 

  31. S.B. Papp, C.E. Wieman, Phys. Rev. Lett. 97, 180404 (2006)

    Google Scholar 

  32. A.D. Lange, K. Pilch, A. Prantner, F. Ferlaino, B. Engeser, H.-C. Nägerl, R. Grimm, C. Chin, Phys. Rev. A 79, 013622 (2009)

    Google Scholar 

  33. G. Thalhammer, G. Barontini, J. Catani, F. Rabatti, C. Weber, A. Simoni, F. Minardi, M. Inguscio, New J. Phys. 11, 055044 (2009)

    Google Scholar 

  34. N. Gross, Z. Shotan, S. Kokkelmans, L. Khaykovich, Phys. Rev. Lett. 105, 103203 (2010)

    Google Scholar 

  35. M. Berninger, A. Zenesini, B. Huang, W. Harm, H.-C. Nägerl, F. Ferlaino, R. Grimm, P.S. Julienne, J.M. Hutson, Phys. Rev. A 87, 032517 (2013)

    Google Scholar 

  36. P. Dyke, S.E. Pollack, R.G. Hulet, Phys. Rev. A 88, 023625 (2013)

    Google Scholar 

  37. G.F. Gribakin, V.V. Flambaum, Phys. Rev. A 48, 546 (1993)

    Google Scholar 

  38. K. Góral, T. Kähler, S.A. Gardiner, E. Tiesinga, P.S. Julienne, J. Phys. B: At. Mol. Opt. Phys. 37, 3457 (2004)

    Google Scholar 

  39. J. Ulmanis, S. Häfner, R. Pires, E.D. Kuhnle, M. Weidemüller, E. Tiemann, New J. Phys. 17, 055009 (2015)

    Google Scholar 

  40. C.J. Joachain, Quantum Collision Theory (Elsevier Science Ltd, 1984)

    Google Scholar 

  41. W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, in Proceedings of the International School of PhysicsEnrico Fermi”, ed. by M. Inguscio, S. Stringari, C.E. Wieman (IOS Press, Amsterdam, 1999), “Making, probing and understanding Bose-Einstein condensates”, pp. 67–176

    Google Scholar 

  42. F. Schwabl, Quantenmechanik (Springer, 2007)

    Google Scholar 

  43. J. Dalibard, in Proceedings of the International School of Physics “Enrico Fermi”, ed. by M. Inguscio, S. Stringari, C.E. Wieman (IOS Press, Amsterdam, 1999), “Collisional dynamics of ultra-cold atomic gases”, pp. 321–349

    Google Scholar 

  44. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon Press, 1991)

    Google Scholar 

  45. J.J. Sakurai, J.J. Napolitano, Modern Quantum Mechanics (Addison-Wesley, 2010)

    Google Scholar 

  46. E.P. Wigner, Phys. Rev. 73, 1002 (1948)

    Google Scholar 

  47. K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, F. Ferlaino, Phys. Rev. Lett. 108, 210401 (2012)

    Google Scholar 

  48. K. Aikawa, A. Frisch, M. Mark, S. Baier, R. Grimm, F. Ferlaino, Phys. Rev. Lett. 112, 010404 (2014)

    Google Scholar 

  49. S. Stellmer, M.K. Tey, B. Huang, R. Grimm, F. Schreck, Phys. Rev. Lett. 103, 200401 (2009)

    Google Scholar 

  50. J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, P. Pedri, L. Santos, Phys. Rev. Lett. 95, 150406 (2005)

    Google Scholar 

  51. M. Lu, N.Q. Burdick, B.L. Lev, Phys. Rev. Lett. 108, 215301 (2012)

    Google Scholar 

  52. H. Feshbach, Ann. Phys. 5, 357 (1958)

    Google Scholar 

  53. U. Fano, Phys. Rev. 124, 1866 (1961)

    Google Scholar 

  54. H.T.C. Stoof, J.M.V.A. Koelman, B.J. Verhaar, Phys. Rev. B 38, 4688 (1988)

    Google Scholar 

  55. C. Strauss, T. Takekoshi, F. Lang, K. Winkler, R. Grimm, J. Hecker Denschlag, E. Tiemann, Phys. Rev. A 82, 052514 (2010)

    Google Scholar 

  56. C. Ticknor, C.A. Regal, D.S. Jin, J.L. Bohn, Phys. Rev. A 69, 042712 (2004)

    Google Scholar 

  57. A.J. Moerdijk, B.J. Verhaar, A. Axelsson, Phys. Rev. A 51, 4852 (1995)

    Google Scholar 

  58. E. Timmermans, P. Tommasini, M. Hussein, A. Kerman, Phys. Rep. 315, 199 (1999)

    Google Scholar 

  59. F.H. Mies, M. Raoult, Phys. Rev. A 62, 012708 (2000)

    Google Scholar 

  60. A. Arias, A reservoir optical dipole trap for creating a Bose-Einstein condensate of \(^{133}\) Cs, Master’s thesis, Heidelberg University (2014)

    Google Scholar 

  61. S. Häfner, A tunable optical dipole trap for \(^6\) Li and \(^{133}\) Cs, Master’s thesis, Heidelberg University (2013)

    Google Scholar 

  62. A. Schönhals, Imaging of ultracold cesium atoms at high magnetic fields, Master’s thesis, Heidelberg University, Germany (2013)

    Google Scholar 

  63. R. Heck, All-optical formation of an ultracold gas of fermionic lithium close to quantum degeneracy, Master’s thesis, Heidelberg University (2012)

    Google Scholar 

  64. V. Vuletić, C. Chin, A.J. Kerman, S. Chu, Phys. Rev. Lett. 81, 5768 (1998)

    Google Scholar 

  65. A.J. Kerman, V. Vuletić, C. Chin, S. Chu, Phys. Rev. Lett. 84, 439 (2000)

    Google Scholar 

  66. P. Treutlein, K.Y. Chung, S. Chu, Phys. Rev. A 63, 051401 (2001)

    Google Scholar 

  67. P.W.H. Pinkse, A. Mosk, M. Weidemüller, M.W. Reynolds, T.W. Hijmans, J.T.M. Walraven, Phys. Rev. Lett. 78, 990 (1997)

    Google Scholar 

  68. M. Hammes, D. Rychtarik, H.-C. Nägerl, R. Grimm, Phys. Rev. A 66, 051401 (2002)

    Google Scholar 

  69. T. Weber, Bose-Einstein condensation of optically trapped cesium, Ph.D. thesis, University of Innsbruck (2003)

    Google Scholar 

  70. P.S. Julienne, J.M. Hutson, Phys. Rev. A 89, 052715 (2014)

    Google Scholar 

  71. C. Chin, P.S. Julienne, Phys. Rev. A 71, 012713 (2005)

    Google Scholar 

  72. R. Napolitano, J. Weiner, C.J. Williams, P.S. Julienne, Phys. Rev. Lett. 73, 1352 (1994)

    Google Scholar 

  73. K.M. Jones, E. Tiesinga, P.D. Lett, P.S. Julienne, Rev. Mod. Phys. 78, 483 (2006)

    Google Scholar 

  74. Z. Idziaszek, T. Calarco, Phys. Rev. A 74, 022712 (2006)

    Google Scholar 

  75. T. Busch, B.-G. Englert, K. Rzażewski, M. Wilkens, Found. Phys. 28, 549 (1998)

    Google Scholar 

  76. J.F. Bertelsen, K. Mølmer, Phys. Rev. A 76, 043615 (2007)

    Google Scholar 

  77. F. Deuretzbacher, K. Plassmeier, D. Pfannkuche, F. Werner, C. Ospelkaus, S. Ospelkaus, K. Sengstock, K. Bongs, Phys. Rev. A 77, 032726 (2008)

    Google Scholar 

  78. M. Jag, M. Zaccanti, M. Cetina, R.S. Lous, F. Schreck, R. Grimm, D.S. Petrov, J. Levinsen, Phys. Rev. Lett. 112, 075302 (2014)

    Google Scholar 

  79. C. Marzok, B. Deh, C. Zimmermann, P.W. Courteille, E. Tiemann, Y.V. Vanne, A. Saenz, Phys. Rev. A 79, 012717 (2009)

    Google Scholar 

  80. T. Schuster, R. Scelle, A. Trautmann, S. Knoop, M.K. Oberthaler, M.M. Haverhals, M.R. Goosen, S.J.J.M.F. Kokkelmans, E. Tiemann, Phys. Rev. A 85, 042721 (2012)

    Google Scholar 

  81. P. Staanum, A. Pashov, H. Knöckel, E. Tiemann, Phys. Rev. A 75, 042513 (2007)

    Google Scholar 

  82. R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E.D. Kuhnle, M. Weidemüller, Phys. Rev. Lett. 112, 250404 (2014)

    Google Scholar 

  83. K. Jachymski, P.S. Julienne, Phys. Rev. A 88, 052701 (2013)

    Google Scholar 

  84. S.-K. Tung, K. Jiménez-García, J. Johansen, C.V. Parker, C. Chin, Phys. Rev. Lett. 113, 240402 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juris Ulmanis .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ulmanis, J. (2017). Two-Body Interactions Between Li and Cs Atoms. In: Heteronuclear Efimov Scenario in Ultracold Quantum Gases. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-51862-6_2

Download citation

Publish with us

Policies and ethics