Skip to main content

Spatial and Temporal Variability Analysis Using Modelled Precipitation Data in Upper Catchment of Chambal Basin

  • Conference paper
  • First Online:
Water Resources in Arid Areas: The Way Forward

Part of the book series: Springer Water ((SPWA))

Abstract

Reckoning precipitation by means of customary methods has many breaks and various slips due to manual noticing which is the most unintended aspects for precipitation analysis. These errors in records rises the inconsistency and grounds uncertainty while using it in simulation modeling, sediment modeling and other such type of works. TMPA 3B42, a research product of the world’s foremost satellite in precipitation study is used in this work for rainfall variability analysis with good accuracy level. The integration of GIS and Remote Sensing acts as an operative tool for extracting and analyzing this precipitation product with spatially interpolating it over region. The objective of this work is to analyze the variability in rainfall over Shipra catchment between 1998 and 2012, and extraction of precipitation data from network common form data files. The study proves that the catchment has an exceedingly variable drift of rainfall in downstream portion. Also, the work results that there is high inconsistency in the year 2008 with fall in rainfall all over the catchment while precipitation was found very less in 2000 and high in 2006 followed by the year 2011. This work also states that downstream portion of the study area leftovers in dearth rainfall condition most of the time but with a tad high runoff affecting the groundwater state in the area. Precipitation shortfall, diminishing water controlling structures and increasing land use is disturbing the water availability in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afanasev I, Volkova T, Elizaryev A, Longobardi A (2014) Analysis of interpolation methods to map the long-term annual precipitation spatial variability for the Republic of Bashkortostan, Russian Federation. WSEAS Trans Environ Dev 10:2224–3496

    Google Scholar 

  • Anders AH, Roe GH, Hallet B, Montgomery DR, Finnegan NJ, Putkonen J (2006) Spatial patterns of precipitation and topography in the Himalaya. Spec Pap Geol Soc Am 398:39–53

    Google Scholar 

  • Barros AP, Chiao S, Lang TJ, Burbank D, Putkonen J (2006) From weather to climate seasonal and interannual variability of storms and implications for erosion processes in the Himalaya. Spec Pap Geol Soc Am 398:17–18

    Google Scholar 

  • Basistha A, Arya DS, Goel NK (2008) Spatial distribution of rainfall in the Indian Himalayas—a case study of Uttarakhand and region. Water Resour Manag 22:1325–1346. doi:10.1007/s11269-007-9228-2

    Article  Google Scholar 

  • Bastiaanssen WGM, Molden DJ, Makin IW (2000) Remote sensing for irrigated agriculture: examples from research and possible applications. Agric Water Manage 46:137–155. doi:10.1016/S0378-3774(00)00080-9

    Article  Google Scholar 

  • Bitew MM, Gebremichael M, Ghebremichael LT, Bayissa YA (2012) Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. J Hydrometeorol 13:338–350. doi:10.1175/2011JHM1292.1

    Article  Google Scholar 

  • Black PE (1996) Watershed hydrology. Lewis Publishers, Boca Raton

    Google Scholar 

  • Bonacci O (2004) On the role of hydrology in water resources management. IAHS Publ 286:88–94

    Google Scholar 

  • Bookhagen B, Burbank DW (2006) Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys Res Lett 33(8):1–5. doi:10.1029/2006GL026037

    Article  Google Scholar 

  • Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys. Res 115:F03019. doi:10.1029/2009JF001426

  • Buytaert W, Celleri R, Willems P, Bièvre DB, Wyseure G (2006) Spatial and temporal rainfall variability in mountainous areas: a case study from the south Ecuadorian Andes. J Hydrol 329:413–421. doi:10.1016/j.jhydrol.2006.02.031

    Article  Google Scholar 

  • Carvalho RC, Woodroffe CD (2015) Rainfall variability in the Shoalhaven River catchment and its relation to climatic indices. Water Resour Manage 29:4963–4976. doi:10.1007/s11269-015-0198-4

    Article  Google Scholar 

  • Cheema MJM, Bastiaanssen WGM (2012) Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus basin. Int J Remote Sens 33(8):2603–2627. doi:10.1080/01431161.2011.617397

    Article  Google Scholar 

  • Chen Y, Ebert EE, Walsh KJE, Davidson NE (2013) Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN data. J Geophys Res 118(5):2184–2196. doi:10.1002/jgrd.50250

    Google Scholar 

  • Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New York, NY

    Google Scholar 

  • Dinku T, Chidzambwa S, Ceccato P, Connor SJ, Ropelewski CF (2008) Validation of high-resolution satellite rainfall products over complex terrain. Int J Remote Sens 29(14):4097–4110. doi:10.1080/01431160701772526

    Article  Google Scholar 

  • Dirks KN, Hay JE, Stow CD, Harris D (1998) High-resolution of rainfall on Norfolk Island, Part II: interpolation of rainfall data. J Hydrol 208:187–193. doi:10.1016/S0022-1694(98)00155-3

    Article  Google Scholar 

  • Engman ET, Gurney RJ (1991) Remote sensing in hydrology. Chapman and Hall Ltd., London

    Book  Google Scholar 

  • Garcia M, Peters-Lidard CD, Goodrich DC (2008) Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States. Water Resour Res 44:W05S13. doi:10.1029/2006WR005788

  • Gebregiorgis AS, Hossain F (2013) Understanding the dependence of satellite rainfall uncertainty on topography and climate for hydrologic model simulation. IEEE Trans Geosci Remote 51(1):704–718. doi:10.1109/TGRS.2012.2196282

    Article  Google Scholar 

  • Gianotti RL, Zhang D, Eltahir EAB (2012) Assessment of the regional climate model version 3 over the maritime continent using different cumulus parameterization and land surface schemes. J Clim 25:638–656. doi:10.1175/JCLI-D-11-00025.1

    Article  Google Scholar 

  • Gourley JJ, Hong Y, Flamig ZL, Wang J, Vergara H, Anagnostou EN (2011) Hydrologic evaluation of rainfall estimates from radar, satellite, gauge, and combinations on Ft. Cobb Basin, Oklahoma. J Hydrometeorol 12:973–988. doi:10.1175/2011JHM1287.1

    Article  Google Scholar 

  • Gupta A, Thakur PK, Nikam BR, Chouksey A (2014) Hydrological modelling of upper and middle Narmada basin using geospatial tools (Chapter 63, pp 663–675). In: Tiwari HL, Suresh S, Jaiswal RK (eds) Hydraulics, water resources, coastal and environmental engineering. Excellent Publishing House, Kishangarh, Vasant Kunj, New Delhi, India. ISBN 978-93-84935-04-7

    Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8(1):38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Nelkin EJ (2010) The TRMM multisatellite precipitation analysis (TAMPA) (Chapter 1). In: Hossain F, Gebremichael M (eds) Satellite rainfall applications for surface hydrology. Springer, pp 3–22. ISBN 978-90-481-2914-0

    Google Scholar 

  • Huffman GJ, Bolvin DT (2012) Real-time TRMM multi-satellite precipitation analysis data set documentation

    Google Scholar 

  • Huffman GJ, Bolvin DT (2013). TRMM and other data precipitation data set documentation

    Google Scholar 

  • Hunink JE, Immerzeel WW, Droogers P (2014) A high-resolution precipitation 2-step mapping procedure (HiP2P): development and application to a tropical mountainous area. Remote Sens Environ 140:179–188. doi:10.1016/j.rse.2013.08.036

  • Hutchinson MF (1995) Interpolating mean rainfall using thin plate smoothing splines. Int J Geogr Inf Syst 9(4):385–403. doi:10.1080/02693799508902045

    Article  Google Scholar 

  • Immerzeel WW, Pellicciotti F, Shrestha AB (2012) Glaciers as a proxy to quantify the spatial distribution of precipitation in the Hunza basin. Mt Res Dev 32(1):30–38. doi:10.1659/MRD-JOURNAL-D-11-00097.1

    Article  Google Scholar 

  • Ly S, Charles C, Degre A (2011) Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol Earth Syst Sci 15(7):2259–2274. doi:10.5194/hess-15-2259-2011

    Article  Google Scholar 

  • Mohssen M, Edwards S, Walters AS, Alqassab A (2011) The impact of El Nino and La Nina weather patterns on Canterbury water resources. In: 19th international congress on modelling and simulation, Perth, Australia

    Google Scholar 

  • Montero-M G, Zarraluqui-S V, García-G F (2012) Evaluation of 2B31 TRMM-product rain estimates for single precipitation events over a region with complex topographic features. J Geophys Res 117(D2):D02101. doi:10.1029/2011JD016280

    Google Scholar 

  • Nalder IA, Wein RW (1998) Spatial interpolation of climatic normals: a test of a new method in the Canadian boreal forest. Agric For Meteorol 92:211–225. doi:10.1016/S0168-1923(98)00102-6

    Article  Google Scholar 

  • Neale CMU, Cosh MH (2012) Remote sensing and hydrology. IAHS Red Book Series, Publ. 352, IAHS Wallingford, UK, 482 pp

    Google Scholar 

  • Philip GM, Watson DF (1982) A precise method for determining contoured surfaces. Aust Petrol Explor Assoc J 22:205–212

    Google Scholar 

  • Shaw EM, Beven KJ, Chappel NA, Lamb R (2011) Hydrology in practice, 4th edn. Spon, London

    Google Scholar 

  • Shrestha D, Singh P, Nakamura K (2012) Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM Precipitation Radar. J Geophys Res 117:D22106. doi:10.1029/2012JD018140

  • Simpson J, Kummerow C, Tao WK, Adler RF (1996) On the tropical rainfall measuring mission (TRMM). Meteorol Atmos Phys 60(1–3):19–36. doi:10.1007/BF01029783

    Article  Google Scholar 

  • Stampoulis D, Anagnostou EN (2012) Evaluation of global satellite rainfall products over Continental Europe. J Hydrometeorol 13(2):588–603. doi:10.1175/JHM-D-11-086.1

    Article  Google Scholar 

  • Sun G, Ranson K, Kharuk V, Kovacs K (2003) Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sens Environ 88(4):401–411. doi:10.1016/j.rse.2003.09.001

    Article  Google Scholar 

  • Tian Y, Peters-Lidard CD (2010) A global map of uncertainties in satellite-based precipitation measurements. Geophys Res Lett 37(24). doi:10.1029/2010GL046008

  • Tung YK (1983) Point rainfall estimation for a mountainous region. J Hydraul Eng 109:1386–1393

    Article  Google Scholar 

  • Wagner W, Verhoest NEC, Ludwig R, Tedesco M (2009) Editorial “Remote sensing in hydrological sciences”. Hydrol Earth Syst Sci 13:813–817. doi:10.5194/hess-13-813-2009

    Article  Google Scholar 

  • Watson DF, Philip GM (1985) A refinement of inverse distance weighted interpolation. Geoprocess 2:315–327

    Google Scholar 

  • Wu H, Adler RF, Hong Y, Tian Y, Policelli F (2012) Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J Hydrometeorol 13:1268–1284. doi:10.1175/JHM-D-11-087.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gupta, A., Kumari, M., Rao, B.K. (2017). Spatial and Temporal Variability Analysis Using Modelled Precipitation Data in Upper Catchment of Chambal Basin. In: Abdalla, O., Kacimov, A., Chen, M., Al-Maktoumi, A., Al-Hosni, T., Clark, I. (eds) Water Resources in Arid Areas: The Way Forward. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-319-51856-5_5

Download citation

Publish with us

Policies and ethics