Skip to main content

Quantum Hamiltonian Computing (QHC) Logic Gates

  • Conference paper
  • First Online:
On-Surface Atomic Wires and Logic Gates

Abstract

The quantum graph of a two-input–one-output QHC Boolean logic gate was used to design a very simple dangling bond QHC logic gate. On an Si(100):H surface and in the vertical single atom manipulation mode, an LT-UHV-STM was used for atom-by-atom construction of this QHC logic gate using only three dangling bonds. As expected, the experimental measurement shows a NOR gate at a 1.3-V positive bias voltage and an OR gate at −1.8 V. The same Boolean logical functions were also obtained in our quantum tunneling calculations, where the geometry and the electronic properties of the Si surface were determined using DFT. The surface Green function matching (SGFM) method was used to calculate the dI/dV spectra in a vertical STM measurement configuration and the tunneling current intensity through the DB gate in a planar two metallic nanopads configuration, confirming the NOR and the OR function of the QHC gate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  2. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). doi:10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  3. Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994). doi:10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  4. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). doi:10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  5. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996). doi:10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  6. Cerdá, J., Van Hove, M.A., Sautet, P., Salmeron, M.: Efficient method for the simulation of STM images. I. Generalized green-function formalism. Phys. Rev. B 56, 15885 (1997). doi:10.1103/PhysRevB.56.15885

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Agency of Science, Technology, and Research (A*STAR) for funding provided through the Visiting Investigatorship Programme Atom Technology project 1021100972, and through the AtMol integrated project contract number 270028 from the European Commission. We also acknowledge the A*STAR Computational Resource Centre (A*CRC) for computational resources and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyo Kawai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kawai, H., Neucheva, O., Dridi, G., Saeys, M., Joachim, C. (2017). Quantum Hamiltonian Computing (QHC) Logic Gates. In: Kolmer, M., Joachim, C. (eds) On-Surface Atomic Wires and Logic Gates . Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-51847-3_8

Download citation

Publish with us

Policies and ethics