Skip to main content

Si(100):H and Ge(100):H Dimer Rows Contrast Inversion in Low-temperature Scanning Tunneling Microscope Images

  • Conference paper
  • First Online:
On-Surface Atomic Wires and Logic Gates

Abstract

Detailed low-temperature scanning tunneling microscope images of the Si(100)-2×1-H and the Ge(100)-2×1-H surfaces show a remarkable contrast inversion between filled- and empty-state images where the hydrogen dimer rows appear bright for filled-state images and dark for empty-state images. This contrast inversion originates from the change in the dominant surface states and their coupling to the tip apex and the bulk channels as a function of the bias voltage.

Sections 1, 3, and 5: Reprinted with minor editorial changes from Surface Science Letters, 632, Tiong Leh Yap, Hiroyo Kawai, Olga Neucheva, Andrew Thye Shen Wee, Cedric Troadec, Mark Saeys, and Christian Joachim, “Si(100)-2×1-H dimer rows contrast inversion in low-temperature scanning tunneling microscope images,” L13-L17, 2015, with permission from Elsevier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joachim, C., Martrou, D., Rezeq, M., Troadec, C., Deng, J., Chandrasekhar, N., Gauthier, S.: Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates. J. Phys. Condens. Matter 22, 084025 (2010). doi:10.1088/0953-8984/22/8/084025

    Article  CAS  Google Scholar 

  2. Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., Simmons, M.Y.: A single-atom transistor. Nat. Nanotechnol. 7, 242 (2012). doi:10.1038/nnano.2012.21

    Article  CAS  Google Scholar 

  3. Piva, P.G., DiLabio, G.A., Pitters, J.L., Zikovsky, J., Rezeq, M., Dogel, S., Hofer, W.A., Wolkow, R.A.: Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658 (2005). doi:10.1038/nature03563

    Article  CAS  Google Scholar 

  4. Hersam, M.C., Guisinger, N.P., Lyding, J.W., Thompson, D.S., Moore, J.S.: Atomic-level study of the robustness of the Si(100)-2×1: H surface following exposure to ambient conditions. App. Phys. Lett. 78, 886 (2001). doi:10.1063/1.1348322

    Article  CAS  Google Scholar 

  5. Boland, J.J.: Scanning tunneling microscopy of the interaction of hydrogen with silicon surfaces. Adv. Phys. 42, 129 (1993). doi:10.1080/00018739300101474

    Article  CAS  Google Scholar 

  6. Bellec, A., Riedel, D., Dujardin, G., Boudrioua, O., Chaput, L., Stauffer, L., Sonnet, P.: Electronic properties of the n-doped hydrogenated silicon (100) surface and dehydrogenated structures at 5 K. Phys. Rev. B 80, 245434 (2009). doi:10.1103/PhysRevB.80.245434

    Article  Google Scholar 

  7. Buehler, E.J., Boland, J.J.: Dimer preparation that mimics the transition state for the adsorption of H2 on the Si(100)-2×1 surface. Science 290, 506 (2000). doi:10.1126/science.290.5491.506

    Article  CAS  Google Scholar 

  8. Bellec, A., Riedel, D., Dujardin, G., Rompotis, N., Kantorovich, L.N.: Dihydride dimer structures on the Si(100): H surface studied by low-temperature scanning tunneling microscopy. Phys. Rev. B 78, 165032 (2008). doi:10.1103/PhysRevB.78.165302

    Article  Google Scholar 

  9. Labidi, H., Kantorovich, L., Riedel, D.: Atomic-scale control of hydrogen bonding on a bare Si(100)-2×1 surface. Phys. Rev. B 86, 165441 (2012). doi:10.1103/PhysRevB.86.165441

    Article  Google Scholar 

  10. Kolmer, M., Godlewski, S., Kawai, H., Such, B., Krok, F., Saeys, M., Joachim, C., Szymonski, M.: Electronic properties of STM-constructed dangling-bond dimer lines on a Ge(001)-(2×1):H surface. Phys. Rev. B. 86, 215307 (2012). doi:10.1103/PhysRevB.86.125307

    Article  Google Scholar 

  11. Haider, M.B., Pitters, J.L., DiLabio, G.A., Livadaru, L., Mutus, J.Y., Wolkow, R.A.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009). doi:10.1103/PhysRevLett.102.046805

    Article  Google Scholar 

  12. Schofield, S.R., Studer, P., Hirjibehedin, C.F., Curson, N.J., Aeppli, G., Bowler, D.R.: Quantum engineering at the silicon surface using dangling bonds. Nat. Commun. 4, 1649 (2013). doi:10.1038/ncomms2679

    Article  CAS  Google Scholar 

  13. Kawai, H., Ample, F., Wang, Q., Yeo, Y.K., Saeys, M., Joachim, C.: Dangling-bond logic gates on a Si(100)-(2×1)-H surface. J. Phys. Condens. Matter 24, 095011 (2012). doi:10.1088/0953-8984/24/9/095011

    Article  Google Scholar 

  14. Ample, F., Duchemin, I., Hliwa, M., Joachim, C.: Single OR molecule and OR atomic circuit logic gates interconnected on a Si(100)H surface. J. Phys. Condens. Matter 23, 125303 (2011). doi:10.1088/0953-8984/23/12/125303

    Article  CAS  Google Scholar 

  15. Neucheva, O.A., Thamankar, R.M., Yap, T.L., Troadec, C., Deng, J., Joachim, C.: Atomic scale interconnection machine. In: Joachim, C., (ed.) Atomic Scale Interconnection Machines, Advances in Atom and Single Molecule Machines, pp. 23–33. Springer, Heidelberg. doi:10.1007/978-3-642-28172-3_3 (2012)

  16. Cerda, J., Hove, M.A.V., Sautet, P., Salmeron, M.: Efficient method for the simulation of STM images. I. Generalized green-function formalism. Phys. Rev. B 56, 15885 (1997). doi:10.1103/PhysRevB.56.15885

    Article  CAS  Google Scholar 

  17. Kienle, D., Bevan, K.H., Liang, G.-C., Siddiqui, L., Cerda, J.I., Ghosh, A.W.: Extended Hückel Theory for band structure, chemistry, and transport II. Silicon. J. Appl. Phys. 100, 043715 (2006). doi:10.1063/1.2259820

    Article  Google Scholar 

  18. Moussa, J.E., Schultz, P.A., Chelikowsky, J.R.: Analysis of the Heyd-Scuseria-Ernzerhof density functional parameter space. J. Chem. Phys. 136, 204117 (2012). doi:10.1063/1.4722993

    Article  Google Scholar 

  19. Kolmer, M., Godlewski, S., Zuzak, R., Wojtaszek, M., Rauer, C., Thuaire, A., Hartmann, J.-M., Moriceau, H., Joachim, C., Szymonski, M.: Atomic scale fabrication of dangling bond structures on hydrogen passivated Si(001) wafers processed and nanopackaged in a clean room environment. Appl. Surf. Sci. 288, 83 (2014). doi:10.1016/j.apsusc.2013.09.124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Agency of Science, Technology, and Research (A*STAR) for funding provided through the Visiting Investigatorship Programme Atom Technology project 1021100972, and through the AtMol integrated project contract number 270028 from the European Commission. We also acknowledge the A*STAR Computational Resource Centre (A*CRC) for computational resources and support. MK acknowledges financial support received from the Foundation for Polish Science (FNP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Joachim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kawai, H. et al. (2017). Si(100):H and Ge(100):H Dimer Rows Contrast Inversion in Low-temperature Scanning Tunneling Microscope Images. In: Kolmer, M., Joachim, C. (eds) On-Surface Atomic Wires and Logic Gates . Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-51847-3_4

Download citation

Publish with us

Policies and ethics