Skip to main content

Nanopackaging of Si(100)H Wafer for Atomic-Scale Investigations

  • Conference paper
  • First Online:
On-Surface Atomic Wires and Logic Gates

Abstract

Ultra-high vacuum (UHV) investigations have demonstrated a successful development of atomic nanostructures. The scanning tunneling microscope (STM) provides surface study at the atomic scale. However, the surface preparation is a crucial experimental step and requires a complex protocol conducted in situ in a UHV chamber. Surface contamination, atomic roughness, and defect density must be controlled in order to ensure the reliability of advanced UHV experiments. Consequently, a packaging for nanoscale devices has been developed in a microelectronic clean room environment enabling the particle density and contaminant concentration control. This nanopackaging solution is proposed in order to obtain a Si(001)-(2×1):H reconstructed surface. This surface is protected by a temporary silicon cap. The nanopackaging process consists in a direct bonding of two passivated silicon surfaces and is followed by a wafer dicing step into 1-cm2 dies. Samples can be stored, shipped, and in situ opened without any additional treatment. A specific procedure has been developed in order to open the nanopackaged samples in a UHV debonder, mounted in the load-lock chamber of a low-temperature STM system (LT-STM). Statistical large scan LT-UHV-SEM images and LT-UHV-STM images have been obtained enabling the surface study at the atomic resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris, J.E.: Nanopackaging: Nanotechnologies and Electronics Packaging, p. 1. Springer (2008)

    Google Scholar 

  2. Joachim, C., Gimzewski, J.K., Schlittler, R.R., Chavy, C.: Electronic transparence of a single C60 molecule. Phys. Rev. Lett. 74(11), 2102–2105 (1995)

    Google Scholar 

  3. Lafferentz, L., Ample, F., Yu, H., Hecht, S., Joachim, C., Grill, L.: Conductance of a single conjugated polymer as a continuous function of its length. Science 323(5918), 1193-1197 (2009)

    Google Scholar 

  4. Ohnishi, H., Kondo Y., Takayanagi, K.: Quantized conductance through individual rows of suspended gold atoms. Nature 395(6704), 780–783 (1998)

    Google Scholar 

  5. Thuaire, A., et al.: Nanopackaging: from Nanomaterials to the Atomic Scale, Advances in Atom and Single Molecule Machines vol. 7, p. 113. Springer Series (2015)

    Google Scholar 

  6. Lwin, M.H.T., Tun, T.N., Kim, H.H., Kajen, R.S., Chandrasekhar, N., Joachim, C.: Silicon on insulator nanoscale backside interconnects for atomic and molecular scale circuits. J. Vac. Sci. Technol. B 28(5), 978-984 (2010)

    Google Scholar 

  7. Reynaud, P., et al.: Nanopackaging solution from clean room to UHV Environment: Hydrogen Passivated Si (100) Substrate fabrication and use for atomic scale investigations and self-assembled monolayer grafting. Procedia Eng. 141, 121–129 (2016)

    Google Scholar 

  8. Rauer, C., Moriceau, H., Rieutord, F., Hartmann, J.M., Fournel, F. Charvet, A.M., Bernier, N., Rochat, N., Dansas, H., Mariolle, D., Morales, C.: Mechanism involved in direct hydrophobic Si(100)-2×1:H bonding. Microsyst. Technol. 21(5), 961-968 (2015)

    Google Scholar 

  9. Kolmer, M., Godlewski, S., Zuzak, R., Wojtaszek, M., Rauer, C., Thuaire, A., Hartmann, J.M., Moriceau, H., Joachim, C., Szymonski, M.: Atomic scale fabrication of dangling bond structures on hydrogen passivated Si(100) wafers processed and nanopackaged in a clean room environement. Appl. Surf. Sci. 288, 83–89 (2014)

    Article  CAS  Google Scholar 

  10. Weber, B., Mahapatra, S., Ryu, H., Lee, S., Fuhrer, A., Reusch, T.C.G., Thompson, D.L., Lee, W.C.T., Klimeck, G., Hollenberg, L.C.L., Simmons, M.Y.: From Ohm’s law survives to the atomic scale. Science 335(6064), 64–67 (2012)

    Google Scholar 

  11. Fournel, F., et al: Accurate control of the misorientation angles in direct wafer bonding. Appl. Phys. Lett. 80(5) (2002)

    Google Scholar 

  12. Le Gac, G., Audoit, G., Thuaire, A., Moriceau, H., Baillin, X.: Nanovias FIB-etching and filling in a micro-nano interposer for molecular electronics. In: Technical Proceedings of the 2012 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2, 539 (2012)

    Google Scholar 

  13. Jerier, P., Dutartre, D.: Boron autodoping in single-wafer epitaxy of silicon at reduced pressure. J. Electrochem. Soc. 146(1), 331–335 (1999)

    Article  CAS  Google Scholar 

  14. Ishikawa, Y., Kumezawa, M., Nuryadi, R., Tabe, M.: Effect of patterning on thermal agglomeration of ultrathin silicon-on-insulator layer. Appl. Surf. Sci. 90(1–4), 11–15 (2002)

    Article  Google Scholar 

  15. Jahan, C., Faynot, O., Tosti, L., Hartmann, J.-M.: Agglomeration control during the selective epitaxial growth of Si raised sources and drains on ultra-thin silicon-on-insulator substrates. J. Cryst. Growth 280(3–4), 530–538 (2005)

    Article  CAS  Google Scholar 

  16. Abbadie, A., Hartmann, J.-M., Holliger, P., Semeria, M.N., Besson, P., Gentile, P.: Low thermal budget surface preparation of Si and SiGe. Appl. Surf. Sci. 225(1–4), 256–266 (2004)

    Article  CAS  Google Scholar 

  17. Bühler, J., Steiner, F.-P., Baltes, H.: Silicon dioxide sacrificial layer etching in surface micromachining. J. Micromech. Microeng. 7(1), R1–R13 (1997)

    Article  Google Scholar 

  18. Meyerson, B.S., Himpsel, F.J., Uram, K.J.: Bistable conditions for low-temperature silicon epitaxy. Appl. Phys. Lett. 57(10), 1034–1036 (1990)

    Article  CAS  Google Scholar 

  19. Trucks, G.W., Raghavachari, K., Higaschi, G.S., Chabal, Y.J.: Mechanism of HF etching of silicon surfaces: a theoretical understanding of hydrogen passivation. Phys. Rev. Lett. 65(4), 504–507 (1990)

    Article  CAS  Google Scholar 

  20. Wostyn, K., Rondas, D., Kenis, K., Loo, R., Hikavyy, A., Douhard, B., Mertens, P.W., Holsteyns, F., De Gendt, S., D’Urzo L., Van Autryve, L.: Use of a purged FOUP to improve H-terminated silicon surface stability prior to epitaxial growth. ECS Trans. 64(6), 669–673 (2014)

    Google Scholar 

  21. Hersam, M.C., Guisinger, N.P., Lyding, J.W., Thomson, D.S., Moore, J.S.: Atomic-level study of the robustness of the Si (100)-2×1: H surface following exposure to ambient conditions. Appl. Phys. Lett. 78(7), 886–888 (2001)

    Article  CAS  Google Scholar 

  22. Rieutord, F., Capello, L., Beneyton, R., Morales, C., Charvet, A.M., Moriceau, H.: Rough surface adhesion mechanisms for wafer bonding. Electrochem. Soc. Trans. 3, 205–215 (2006)

    CAS  Google Scholar 

  23. Chabal, Y.J., Patel, C.K.N.: Solid hydrogen in amorphous silicon: phase transition. Phys. Rev. Lett. 53(18), 1771–1774 (1984)

    Article  CAS  Google Scholar 

  24. Chabal, Y.J.: High-resolution infrared spectroscopy of adsorbates on semiconductor surfaces: Hydrogen on Si(100) and Ge(100). Surf. Sci. 168, 594–608 (1986)

    Article  CAS  Google Scholar 

  25. Weldon, M., et al.: Surface Science 368(1–3), 163–178 (1996)

    Google Scholar 

  26. Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J., Baro, A.M.: WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007)

    Article  CAS  Google Scholar 

  27. Huang, D.H., Yamamoto, Y.: Atomic manipulation of hydrogen on hydrogen-terminated silicon surfaces with scanning tunnelling microscope. Force Microsc./Scan. Tunneling Microsc. 3(4), 50–62 (2002)

    Google Scholar 

  28. Yang, J., Sordes, D., Kolmer, M., Martrou, D., Joachim, C.: Imaging, single atom contact and single atom manipulations at low temperature using the new ScientaOmicron LT-UHV-4 STM. Eur. Phys. J. Appl. Phys. 73(1), 10702 (2016)

    Article  Google Scholar 

  29. Yap, T.L., Kawai, H., Neucheva, O.A., Wee, A.T.S., Troadec, C., Saeys, M., Joachim, C.: Si(100)-2×1-H dimer rows contrast inversion in low-temperature scanning tunneling microscope images. Surf. Sci. 632, L13-L17 (2015)

    Google Scholar 

  30. Buehler, E.J., Boland, J.J.: Identification and characterization of a novel silicon hydride species on the Si(100) surface. Surf. Sci. 425(1), L363-L368 (1999)

    Google Scholar 

  31. Kawai, H., Neucheva, O., Yap, T.L., Joachim, C., Saeys, M.: Electronic characterization of a single dangling bond on n- and p-type Si(001)-(2×1):H. Surf. Sci. 645, 88–92 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by the 7th Framework Program of the European Union Collaborative Project ICT (Information and Communication Technologies) “Atomic Scale and Single Molecule Logic Gate Technologies” (ATMOL), contract number: FP7-270028. The CEA Institute, the CEMES, and the Polish National Science Center are acknowledged as well for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Sordes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sordes, D. et al. (2017). Nanopackaging of Si(100)H Wafer for Atomic-Scale Investigations. In: Kolmer, M., Joachim, C. (eds) On-Surface Atomic Wires and Logic Gates . Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-51847-3_2

Download citation

Publish with us

Policies and ethics