Skip to main content

The Emerging Role of Cardiac Stem Cells in Cardiac Regeneration

  • Chapter
  • First Online:
Book cover Imaging in Stem Cell Transplant and Cell-based Therapy

Abstract

The dawn of the new century has witnessed significant advances in our understanding of myocardial regeneration in both physiological and pathophysiological conditions. Several studies have divulged the existence of resident cardiac stem cells (CSCs) in heart that have the capacity to proliferate and mature into precursors which, in turn, develop into mature cardiac cell types. Various populations of CSCs have been reported in the adult mammalian myocardium based on the antigen that has been used for their primary isolation. Although the contribution of these cells in maintaining homeostasis in heart is yet debatable, they have been widely explored for their therapeutic efficacy in several experimental models of myocardial injury. A few clinical trials have also been initiated but with little success. CSC therapy is a potent and promising approach for cardiac therapy, however, their efficacy is limited owing to the reduced numbers and survival of the transplanted cells in the infarcted tissue. Several strategies are being explored to enhance the numbers, survival, retention and engraftment of CSCs in the host tissues. In the current chapter, we discuss the basic biology of CSCs, their role in cardiac physiology and pathophysiology and their therapeutic use in experimental and clinical studies. The chapter also deliberates about major constraints in their use and describes approaches that are presently being employed for their activation and expansion, both in vitro and in vivo. In the end, we also give an account of other cells, especially bone marrow-derived cells that are used for cardiac regeneration and how these cells fall in comparison to CSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  CAS  PubMed  Google Scholar 

  2. Hosoda T, D'Amario D, Cabral-Da-Silva MC, Zheng H, Padin-Iruegas ME, Ogorek B, et al. Clonality of mouse and human cardiomyogenesis in vivo. Proc Natl Acad Sci U S A. 2009;106:17169–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Linke A, Müller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A. 2005;102:8966–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP, Wu J, Kesteven SH, Holman SR, et al. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell. 2014;157:795–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leri A, Rota M, Hosoda T, Goichberg P, Anversa P. Cardiac stem cell niches. Stem Cell Res. 2014;631-646.

    Google Scholar 

  6. Ferreira-Martins J, Ogórek B, Cappetta D, Matsuda A, Signore S, D'Amario, et al. Cardiomyogenesis in the developing heart is regulated by c-kit-positive cardiac stem cells. Circ Res. 2012;110:701–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fazel S, Cimini M, Chen L, Li S, Angoulvant D, Fedak P, et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest. 2006;116:1865–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan SS-K, Shueh Y-Z, Liu Y-W, Hsieh PCH. Harnessing endogenous intra- and extra-cardiac stem cells for cardiac regeneration—hope or hype? Drug Discov Today Ther Strateg. 2009;6:127–33.

    Article  CAS  Google Scholar 

  9. Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, et al. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 2013;154:827–42.

    Article  CAS  PubMed  Google Scholar 

  10. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A. 2003;100:12313–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem. 2004;279:11384–91.

    Article  CAS  PubMed  Google Scholar 

  12. Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004;265:262–75.

    Article  CAS  PubMed  Google Scholar 

  13. Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127:1151–65.

    Article  CAS  PubMed  Google Scholar 

  14. Pandur P, Sirbu IO, Kühl SJ, Philipp M, Kühl M. Islet1-expressing cardiac progenitor cells: a comparison across species. Dev Genes Evol. 2013;223:117–29.

    Article  PubMed  Google Scholar 

  15. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911–21.

    Article  CAS  PubMed  Google Scholar 

  16. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115:896–908.

    Article  PubMed  Google Scholar 

  17. Wessels A, Pérez-Pomares JM. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004;276:43–57.

    Article  CAS  PubMed  Google Scholar 

  18. Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell. 2011;9:527–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anversa P, Kajstura J, Leri A, Bolli R. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation. 2006;113:1451–63.

    Article  PubMed  Google Scholar 

  20. Hsieh PC, Segers VF, Davis ME, MacGillivray C, Gannon J, Molkentin JD, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13:970–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chan SS, Shueh YZ, Bustamante N, Tsai SJ, Wu HL, Chen JH, et al. Genetic fate-mapping for studying adult cardiomyocyte replenishment after myocardial injury. Meth Mol Biol. 2010;660:201–11.

    Article  CAS  Google Scholar 

  22. Malliaras K, Zhang Y, Seinfeld J, Galang G, Tseliou E, Cheng K, Sun B, et al. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med. 2013;5:191–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uchida S, De Gaspari P, Kostin S, Jenniches K, Kilic A, Izumiya Y, et al. Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Rep. 2013;1:397–410.

    Article  CAS  Google Scholar 

  24. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493:433–6.

    Article  CAS  PubMed  Google Scholar 

  25. Ali SR, Hippenmeyer S, Saadat LV, Luo L, Weissman IL, Ardehali R. Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci U S A. 2014;111:8850–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SC, et al. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509:337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci U S A. 2005;102:3766–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, et al. Human cardiac stem cells. Proc Natl Acad Sci U S A. 2007;104:14068–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation. 2010;121:293–305.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bolli R, Tang XL, Sanganalmath SK, Rimoldi O, Mosna F, Abdel-Latif A, et al. Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy. Circulation. 2013;128:122–31.

    Article  CAS  PubMed  Google Scholar 

  31. Welt FG, Gallegos R, Connell J, Kajstura J, D'Amario D, Kwong RY, et al. Effect of cardiac stem cells on left-ventricular remodeling in a canine model of chronic myocardial infarction. Circ Heart Fail. 2013;6:99–106.

    Article  PubMed  Google Scholar 

  32. Lee ST, White AJ, Matsushita S, Malliaras K, Steenbergen C, Zhang Y, et al. intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J Am Coll Cardiol. 2011;57:455–65.

    Article  PubMed  Google Scholar 

  33. Suzuki G, Weil BR, Leiker MM, Ribbeck AE, Young RF, Cimato TR, et al. Global intracoronary infusion of allogeneic cardiosphere-derived cells improves ventricular function and stimulates endogenous myocyte regeneration throughout the heart in swine with hibernating myocardium. PLoS One. 2014;9:e113009.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–57.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014;63:10–22.

    Article  Google Scholar 

  36. Kapelios CJ, Nanas JN, Malliaras K. Allogeneic cardiosphere-derived cells for myocardial regeneration: current progress and recent results. Future Cardiol. 2016;12:87–100.

    Article  CAS  PubMed  Google Scholar 

  37. Yacoub MH and Terrovitis J. CADUCEUS, SCIPIO, ALCADIA: cell therapy trials using cardiac-derived cells for patients with post myocardial infarction LV dysfunction, still evolving. Glob Cardiol Sci Pract 2013:5-8

    Google Scholar 

  38. Goumans MJ, de Boer TP, Smits AM, van Laake LW, van Vliet P, Metz CH, et al. TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res. 2007;1:138–49.

    Article  CAS  PubMed  Google Scholar 

  39. Tang YL, Shen L, Qian K, Phillips MI. A novel two-step procedure to expand cardiac Sca-1+ cells clonally. Biochem Biophys Res Commun. 2007;359:877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aghila Rani KG, Kartha CC. Effects of epidermal growth factor on proliferation and migration of cardiosphere-derived cells expanded from adult human heart. Growth Factors. 2010;28:157–65.

    Article  CAS  PubMed  Google Scholar 

  41. Windmolders S, De Boeck A, Koninckx R, Daniëls A, De Wever O, Bracke M, et al. Mesenchymal stem cell secreted platelet derived growth factor exerts a pro-migratory effect on resident cardiac atrial appendage stem cells. J Mol Cell Cardiol. 2014;66:177–88.

    Article  CAS  PubMed  Google Scholar 

  42. Kawaguchi N, Smith AJ, Waring CD, Hasan MK, Miyamoto S, Matsuoka R, et al. c-kitpos GATA-4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signalling. PLoS One. 2010;5:e14297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Al-Lamki RS, Lu W, Wang J, Yang J, Sargeant TJ, Wells R, et al. TNF, acting through inducibly expressed TNFR2, drives activation and cell cycle entry of c-kit+ cardiac stem cells in ischemic heart disease. Stem Cells. 2013;31:1881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bollini S, Riley PR, Smart N. Thymosin β4: multiple functions in protection, repair and regeneration of the mammalian heart. Expert Opin Biol Ther. 2015;15(Suppl 1):163–74.

    Article  CAS  Google Scholar 

  45. Tyukavin AI, Belostotskaya GB, Golovanova TA, Galagudza MM, Zakharov EA, Burkova NV, et al. Stimulation of proliferation and differentiation of rat resident myocardial cells with apoptotic bodies of cardiomyocytes. Bull Exp Biol Med. 2015;159:138–41.

    Article  CAS  PubMed  Google Scholar 

  46. Mohsin S, Khan M, Toko H, Bailey B, Cottage CT, Wallach K, et al. Human cardiac progenitor cells engineered with Pim-1 kinase enhance myocardial repair. J Am Coll Cardiol. 2012;60:1278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng K, Blusztajn A, Shen D, Li TS, Sun B, Galang G, et al. Functional performance of human cardiosphere-derived cells delivered in an in situ polymerizable hyaluronan-gelatin hydrogel. Biomaterials. 2012;33:5317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cai C, Teng L, Vu D, He JQ, Guo Y, Li Q, Tang XL, et al. The heme oxygenase 1 inducer (CoPP) protects human cardiac stem cells against apoptosis through activation of the extracellular signal-regulated kinase (ERK)/NRF2 signaling pathway and cytokine release. J Biol Chem. 2012;287:33720–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, et al. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell. Eur Heart J. 2014;35(39):2722–31.

    Article  CAS  PubMed  Google Scholar 

  50. Ellison GM, Torella D, Dellegrottaglie S, Perez-Martinez C, Perez de Prado A, Vicinanza C, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol. 2011;58:977–86.

    Article  CAS  PubMed  Google Scholar 

  51. Koudstaal S, Bastings MM, Feyen DA, Waring CD, van Slochteren FJ, Dankers PY, et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J Cardiovasc Transl Res. 2014;7:232–41.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jackson R, Tilokee EL, Latham N, Mount S, Rafatian G, Strydhorst J, et al. Paracrine engineering of human cardiac stem cells with insulin-like growth factor 1 enhances myocardial repair. J Am Heart Assoc. 2015;4:e002104.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Russell JL, Goetsch SC, Aguilar HR, Frantz DE, Schneider JW. Targeting native adult heart progenitors with cardiogenic small-molecules. ACS Chem Biol. 2012;7:1067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koh GY, Klug MG, Soonpaa MH, Field LJ. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest. 1993;92:1548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Siminiak T, Kalawski R, Fiszer D, Jerzykowska O, Rzeźniczak J, Rozwadowska N, et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J. 2004;148(3):531–7.

    Article  PubMed  Google Scholar 

  56. Gavira JJ, Herreros J, Perez A, Garcia-Velloso MJ, Barba J, Martin-Herrero F, et al. Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J Thorac Cardiovasc Surg. 2006;131:799–804.

    Article  PubMed  Google Scholar 

  57. Li RK, Mickle DA, Weisel RD, Mohabeer MK, Zhang J, Rao V, et al. Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation. 1997;96:179–86.

    Google Scholar 

  58. Sakai T, Li RK, Weisel RD, Mickle DA, Jia ZQ, Tomita S, et al. Fetal cell transplantation: a comparison of three cell types. J Thorac Cardiovasc Surg. 1999;118:715–24.

    Article  CAS  PubMed  Google Scholar 

  59. Min JY, Sullivan MF, Yang Y, Zhang JP, Converso KL, Morgan JP, et al. Significant improvement of heart function by cotransplantation of human mesenchymal stem cells and fetal cardiomyocytes in postinfarcted pigs. Ann Thorac Surg. 2002;74:1568–75.

    Article  PubMed  Google Scholar 

  60. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.

    Article  CAS  PubMed  Google Scholar 

  61. Balsam LB, Robbins RC. Haematopoietic stem cells and repair of the ischaemic heart. Clin Sci (Lond). 2005;109:483–92.

    Article  CAS  Google Scholar 

  62. Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, et al. Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation. 2013;127:213–23.

    Article  PubMed  Google Scholar 

  63. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  CAS  PubMed  Google Scholar 

  64. Kalka C, Tehrani H, Laudenberg B, Vale PR, Isner JM, Asahara T, et al. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg. 2000;70:829–34.

    Article  CAS  PubMed  Google Scholar 

  65. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation. 2001;103:634–7.

    Article  CAS  PubMed  Google Scholar 

  66. Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation. 2002;105:732–8.

    Article  CAS  PubMed  Google Scholar 

  67. Brunt KR, Wu J, Chen Z, Poeckel D, Dercho RA, Melo LG, et al. Ex vivo Akt/HO-1 gene therapy to human endothelial progenitor cells enhances myocardial infarction recovery. Cell Transplant. 2012;21:1443–61.

    Article  PubMed  Google Scholar 

  68. Kaur S, Kumar TR, Uruno A, Sugawara A, Jayakumar K, Kartha CC. Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study. Basic Res Cardiol. 2009;104:39–749.

    Article  Google Scholar 

  69. Kaur S, Harikrishnan VS, Radhakrishnan S, Uruno A, Sugawara A, et al. Transfection of endothelial nitric oxide synthase gene improves angiogenic efficacy of endothelial progenitor cells in rabbits with hindlimb ischemia. J Clin Exp Cardiol. 2011;2:140. doi:10.4172/2155-9880.1000140.

    Article  CAS  Google Scholar 

  70. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141–8.

    Article  PubMed  Google Scholar 

  71. Assmus B, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006;355(12):1222–32.

    Article  CAS  PubMed  Google Scholar 

  72. Clifford DM, Fisher SA, Brunskill SJ, Doree C, Mathur A, Watt S, et al. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev. 2012;2:Cd006536.

    Google Scholar 

  73. Fisher SA, Brunskill SJ, Doree C, Mathur A, Taggart DP, Martin-Rendon E. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev. 2014;4:CD007888.

    Google Scholar 

  74. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, et al. Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med. 2000;6:88–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002;91:189–201.

    Article  CAS  PubMed  Google Scholar 

  76. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25:1015–24.

    Article  CAS  PubMed  Google Scholar 

  77. Min JY, Huang X, Xiang M, Meissner A, Chen Y, Ke Q, et al. Homing of intravenously infused embryonic stem cell-derived cells to injured hearts after myocardial infarction. J Thorac Cardiovasc Surg. 2006;131:889–97.

    Article  PubMed  Google Scholar 

  78. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol. 2004;22:1282–9.

    Article  CAS  PubMed  Google Scholar 

  79. Chong JJ, Murry CE. Cardiac regeneration using pluripotent stem cells—progression to large animal models. Stem Cell Res. 2014;13:654–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS, Nguemo F, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation. 2008;118:507–17.

    Article  PubMed  Google Scholar 

  81. Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B, Matsuoka S, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation. 2008;118:498–506.

    Article  PubMed  Google Scholar 

  82. Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation. 2012;126:S29–37.

    Article  CAS  PubMed  Google Scholar 

  83. Miki K, Uenaka H, Saito A, Miyagawa S, Sakaguchi T, Higuchi T, et al. Bioengineered myocardium derived from induced pluripotent stem cells improves cardiac function and attenuates cardiac remodeling following chronic myocardial infarction in rats. Stem Cells Transl Med. 2012;1:430–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savneet Kaur Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kaur, S., Kaur, I., Kartha, C.C. (2017). The Emerging Role of Cardiac Stem Cells in Cardiac Regeneration. In: Pandey, T. (eds) Imaging in Stem Cell Transplant and Cell-based Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-51833-6_7

Download citation

Publish with us

Policies and ethics