Advertisement

The Perceptual Lossless Quantization of Spatial Parameter for 3D Audio Signals

  • Gang Li
  • Xiaochen WangEmail author
  • Li Gao
  • Ruimin Hu
  • Dengshi Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10133)

Abstract

With the development of multichannel audio systems, the 3D audio systems have already come into our lives. But the increasing number of channels brought challenges to storage and transmission of large amounts of data. Spatial Audio Coding (SAC), the mainstream of 3D audio coding technologies, is key to reproduce 3D multichannel audio signals with efficient compression. Just Noticeable Difference (JND) characteristics of human auditory system can be utilized to reduce spatial perceptual redundancy in the spatial parameters quantization process of SAC. However, the current quantization methods of SAC fully combine the JND characteristics. In this paper, we proposed a Perceptual Lossless Quantization of Spatial Parameter (PLQSP) method, the azimuthal and elevational quantization step sizes of spatial parameters are combined with JNDs. Both objective and subjective experiments have conducted to prove the high efficiency of PLQSP method. Compared with reference method SLQP-L/SLQP-H, the quantization codebook size of PLQSP has decreased by 16.99% and 27.79% respectively, while preserving similar listening quality.

Keywords

3D audio Spatial parameters Quantization JND 

References

  1. 1.
    ITU-R BS.775-1. Multichannel Stereophonic Sound System with and with out Accompanying Pictures (1994)Google Scholar
  2. 2.
    Ando, A.: Conversion of multichannel sound signal maintaining physical properties of sound in reproduced sound field. IEEE Trans. Audio Speech Lang. Process. 19(6), 1467–1475 (2011)CrossRefGoogle Scholar
  3. 3.
    Sergi, G.: Knocking at the door of cinematic artifice: Dolby Atmos, challenges and opportunities. New Soundtrack 3(2), 107–121 (2013)CrossRefGoogle Scholar
  4. 4.
    Disch, S., Ertel, C., Faller, C., et al.: Spatial audio coding: next-generation efficient and compatible coding of multi-channel audio. In: Audio Engineering Society Convention 117. Audio Engineering Society (2004)Google Scholar
  5. 5.
    Jeroen, B., Christof, F.: Spatial Audio Processing: MPEG Surround and Other Applications. Wiley, Hoboken (2007)Google Scholar
  6. 6.
    Herre, J., Hilpert, J., Kuntz, A., et al.: MPEG-H audio—the new standard for universal spatial/3D audio coding. J. Audio Eng. Soc. 62(12), 821–830 (2015)CrossRefGoogle Scholar
  7. 7.
    Cheng, B.: Spatial squeezing techniques for low bit-rate multichannel audio coding (2011)Google Scholar
  8. 8.
    Cheng, B., Ritz, C., Burnett, I., et al.: A general compression approach to multi-channel three-dimensional audio. IEEE Trans. Audio Speech Lang. Process. 21(8), 1676–1688 (2013)CrossRefGoogle Scholar
  9. 9.
    Blauert, J.: Spatial Hearing: the Psychophysics of Human Sound Localization. MIT press, Cambridge (1997)Google Scholar
  10. 10.
    Gao, L., Hu, R., Wang, X., et al.: Perceptual Lossless Quantization of Spatial Parameterof multichannel audio signals. EURASIP J. Audio Speech Music Process. 2016(1), 1–18 (2016)CrossRefGoogle Scholar
  11. 11.
    Gao, L., Hu, R., Wang, X., et al.: Effective utilisation of JND for spatial parameters quantisation in 3D multichannel audio. Electron. Lett. 52(12), 1074–1076 (2016)CrossRefGoogle Scholar
  12. 12.
    Pulkki, V.: Virtual sound source positioning using vector base amplitude panning. J. Audio Eng. Soc. 45(6), 456–466 (1997)Google Scholar
  13. 13.
    Daniel, J., Moreau, S., Nicol, R.: Further investigations of high-order ambisonics and wavefield synthesis for holophonic sound imaging. In: Audio Engineering Society Convention 114. Audio Engineering Society (2003)Google Scholar
  14. 14.
    Heng, W., Cong, Z., Ruimin, H., Weiping, T., Xiaochen, W.: The perceptual characteristics of 3D orientation. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014. LNCS, vol. 8326, pp. 353–360. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-04117-9_35 CrossRefGoogle Scholar
  15. 15.
    Makous, J.C., Middlebrooks, J.C.: Two-dimensional sound localization by human listeners. J. Acoust. Soc. Am. 87(5), 2188–2200 (1990)CrossRefGoogle Scholar
  16. 16.
    Bureau ITU-R. Method for the subjective assessment of intermediate quality level of coding systems. ITU-R Recommendations, Supplement 1 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Gang Li
    • 1
    • 2
    • 3
  • Xiaochen Wang
    • 2
    • 3
    Email author
  • Li Gao
    • 2
    • 3
  • Ruimin Hu
    • 1
    • 2
    • 3
  • Dengshi Li
    • 2
    • 3
  1. 1.State Key Laboratory of Software EngineeringWuhan UniversityWuhanChina
  2. 2.National Engineering Research Center for Multimedia Software, School of ComputerWuhan UniversityWuhanChina
  3. 3.Hubei Provincial Key Laboratory of Multimedia and Network Communication EngineeringWuhan UniversityWuhanChina

Personalised recommendations