Frame-Independent and Parallel Method for 3D Audio Real-Time Rendering on Mobile Devices

  • Yucheng Song
  • Xiaochen WangEmail author
  • Cheng Yang
  • Ge Gao
  • Wei Chen
  • Weiping Tu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10133)


As 3D audio is a fundamental medium of virtual reality (VR), 3D audio real-time rendering technique is essential for the implementation of VR, especially on the mobile devices. While constrained by the limited computational power, the computation load is too high to implement 3D audio real-time rendering on the mobile devices. To solve this problem, we propose a frame-independent and parallel method of framing convolution, to parallelize process of 3D audio rendering using head-related transfer function (HRTF). In order to refrain from the dependency of overlap-add convolution over the adjacent frames, the data of convolution result is added on the final results of the two adjacent frames. We found our method could reduce the calculation time of 3D audio rendering significantly. The results were 0.74 times, 0.5 times and 0.36 times the play duration of si03.wav (length of 27 s), with Snapdragon 801, Kirin 935 and Helio X10 Turbo, respectively.


Virtual reality 3D audio rendering Mobile devices Parallel Framing convolution 


  1. 1.
    Gerzon, M.A.: Ambisonics. Part two: studio techniques. Studio sound 17(8), 24–26 (1975)Google Scholar
  2. 2.
    Berkhout, A.J.: A holographic approach to acoustic control. J. Audio Eng. Soc. 36(12), 977–995 (1988). Audio Engineering Soc, New YorkGoogle Scholar
  3. 3.
    Berkhout, A.J., de Vries, D., Vogel, P.: Acoustic control by wave field synthesis. J. Acoust. Soc. Am. 93(5), 2764–2778 (1993)CrossRefGoogle Scholar
  4. 4.
    Pulkki, V., Karjalainen, M.: Multichannel audio rendering using amplitude panning [DSP applications]. IEEE Sig. Process. Mag. 25(3), 118–122 (2008). IEEE PressCrossRefGoogle Scholar
  5. 5.
    Jianjun, H.E., Tan, E.L., Gan, W.S.: Natural sound rendering for headphones: integration of signal processing techniques. IEEE Sig. Process. Mag. 32(2), 100–113 (2015). IEEE PressCrossRefGoogle Scholar
  6. 6.
    Lee, D.H., Kim, K.N., Lee, S.D., Chong, U.P.: A 3-D sound orchestra in the cyber space. In: The 4th Korea-Russia International Symposium, vol. 2, pp. 12–16. IEEE Press (2000)Google Scholar
  7. 7.
    Algazi, V.R., Duda, R.O., Thompson, D.M., Avendano, C.: The CIPIC HRTF database. In: 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics, pp. 99–102. IEEE Press (2001)Google Scholar
  8. 8.
    Qu, T., Xiao, Z., Gong, M., Huang, Y., Li, X., Wu, X.: Distance-dependent head-related transfer functions measured with high spatial resolution using a spark gap. IEEE Trans. Actions Audio Speech Lang. Process. 17(6), 1124–1132 (2009). IEEE PressCrossRefGoogle Scholar
  9. 9.
    Zotkin, D.N., Duraiswami, R., Davis, L.S.: Rendering localized spatial audio in a virtual auditory space. IEEE Trans. Multimedia 6(4), 553–564 (2004). IEEE PressCrossRefGoogle Scholar
  10. 10.
    Fu, Z.H., Xie, L., Jiang, D.M., Zhang, Y.N.: Fast 3D audio image rendering using equalized and relative HRTFs. In: 2013 International Conference on Orange Technologies (ICOT), pp. 47–50. IEEE Press (2013)Google Scholar
  11. 11.
    Zhang, C., Xie, B.: Platform for dynamic virtual auditory environment real-time rendering system. Chin. Sci. Bull. 58(3), 316–327 (2013)CrossRefGoogle Scholar
  12. 12.
    Iwaya, Y., Otani, M., Tsuchiya, T., Li, J.: Virtual auditory display on a smartphone for high-resolution acoustic space by remote rendering. In: 2015 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 368–371. IEEE Press, September 2015Google Scholar
  13. 13.
    Xie, B., Zhong, X., Rao, D., Liang, Z.: Head-related transfer function database and its analyses. Sci. China Ser. G Phys. Mech. Astron. 50(3), 267–280 (2007). SpringerCrossRefGoogle Scholar
  14. 14.
    Gardner, W.G., Martin, K.D.: HRTF measurements of a KEMAR. J. Acoust. Soc. Am. 97(6), 3907–3908 (1995). Acoustical Society of AmericaCrossRefGoogle Scholar
  15. 15.
    Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Pearson Higher Education, London (2010)zbMATHGoogle Scholar
  16. 16.
    Carty, B.: Movements in binaural space: issues in HRTF interpolation and reverberation, with applications to computer music. Doctoral dissertation, National University of Ireland Maynooth (2010)Google Scholar
  17. 17.
    Snchez, I., Bescs, J.: Software modules for HRTF based dynamic spatialisation. Grupo de Tratamiento de imgenes, Universidad Politcnica de Madrid. Script and Documentation can be found on the CD-ROM respectively in Source C++ Bescos and Documentation Class LibrariesXBescos (2007)Google Scholar
  18. 18.
    Zhang, J., Xu, C., Xia, R., Li, J., Yan, Y.: Dependency of the finite-impulse-response-based head-related impulse response model on filter order (2014).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yucheng Song
    • 1
    • 2
  • Xiaochen Wang
    • 2
    • 3
    Email author
  • Cheng Yang
    • 2
    • 4
  • Ge Gao
    • 2
  • Wei Chen
    • 1
    • 2
  • Weiping Tu
    • 2
  1. 1.State Key Laboratory of Software EngineeringWuhan UniversityWuhanChina
  2. 2.National Engineering Research Center for Multimedia SoftwareComputer School of Wuhan UniversityWuhanChina
  3. 3.Hubei Provincial Key Laboratory of Multimedia and Network Communication EngineeringWuhan UniversityWuhanChina
  4. 4.School of Physics and Electronic ScienceGuizhou Normal UniversityGuiyangChina

Personalised recommendations