Advertisement

Discovering Geographic Regions in the City Using Social Multimedia and Open Data

  • Stevan RudinacEmail author
  • Jan Zahálka
  • Marcel Worring
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10133)

Abstract

In this paper we investigate the potential of social multimedia and open data for automatically identifying regions within the city. We conjecture that the regions may be characterized by specific patterns related to their visual appearance, the manner in which the social media users describe them, and the human mobility patterns. Therefore, we collect a dataset of Foursquare venues, their associated images and users, which we further enrich with a collection of city-specific Flickr images, annotations and users. Additionally, we collect a large number of neighbourhood statistics related to e.g., demographics, housing and services. We then represent visual content of the images using a large set of semantic concepts output by a convolutional neural network and extract latent Dirichlet topics from their annotations. User, text and visual information as well as the neighbourhood statistics are further aggregated at the level of postal code regions, which we use as the basis for detecting larger regions in the city. To identify those regions, we perform clustering based on individual modalities as well as their ensemble. The experimental analysis shows that the automatically detected regions are meaningful and have a potential for better understanding dynamics and complexity of a city.

Keywords

Urban computing Social multimedia Open data Human mobility patterns Semantic concept detection Topic modelling 

References

  1. 1.
    Andrienko, N., Andrienko, G., Fuchs, G., Jankowski, P.: Scalable and privacy-respectful interactive discovery of place semantics from human mobility traces. Inf. Vis. 15(2), 117–153 (2016)CrossRefGoogle Scholar
  2. 2.
    Boureau, Y.-L., Ponce, J., LeCun, Y.: A theoretical analysis of feature pooling in visual recognition. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 111–118 (2010)Google Scholar
  3. 3.
    Cranshaw, J., Schwartz, R., Hong, J., Sadeh, N.: The livehoods project: utilizing social media to understand the dynamics of a city. In: International AAAI Conference on Weblogs and Social Media (2012)Google Scholar
  4. 4.
    Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255, June 2009Google Scholar
  5. 5.
    Fang, Q., Sang, J., Xu, C.: Giant: geo-informative attributes for location recognition and exploration. In: Proceedings of the 21st ACM International Conference on Multimedia, MM 2013, pp. 13–22. ACM, New York (2013)Google Scholar
  6. 6.
    Boonzajer Flaes, J., Rudinac, S., Worring, M.: What multimedia sentiment analysis says about city liveability. In: Ferro, N., Crestani, F., Moens, M.-F., Mothe, J., Silvestri, F., Nunzio, G.M., Hauff, C., Silvello, G. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 824–829. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-30671-1_74 CrossRefGoogle Scholar
  7. 7.
    Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Google Maps. Postcodes Amsterdam. http://goo.gl/hHoZWi. Accessed Nov 2015
  9. 9.
    Hoffman, M., Bach, F.R., Blei, D.M.: Online learning for latent Dirichlet allocation. In: Advances in Neural Information Processing Systems, NIPS 2010, pp. 856–864 (2010)Google Scholar
  10. 10.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, MM 2014, pp. 675–678. ACM New York (2014)Google Scholar
  11. 11.
    Kennedy, L., Naaman, M., Ahern, S., Nair, R., Rattenbury, T.: How flickr helps us make sense of the world: context and content in community-contributed media collections. In: Proceedings of the 15th ACM International Conference on Multimedia, MM 2007, pp. 631–640. ACM, New York (2007)Google Scholar
  12. 12.
    Larson, M., Soleymani, M., Serdyukov, P., Rudinac, S., Wartena, C., Murdock, V., Friedland, G., Ordelman, R., Jones, G.J.F.: Automatic tagging, geotagging in video collections, communities. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, ICMR 2011, pp. 51:1–51:8. ACM, New York (2011)Google Scholar
  13. 13.
    Luo, J., Joshi, D., Yu, J., Gallagher, A.: Geotagging in multimedia and computer vision–a survey. Multimedia Tools Appl. 51(1), 187–211 (2011)CrossRefGoogle Scholar
  14. 14.
    Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 849–856. MIT Press, Cambridge (2002)Google Scholar
  15. 15.
    Porzi, L., Rota Bulò, S., Lepri, B., Ricci, E.: Predicting and understanding urban perception with convolutional neural networks. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM 2015, pp. 139–148. ACM, New York (2015)Google Scholar
  16. 16.
    Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, May 2010Google Scholar
  17. 17.
    Rudinac, S., Hanjalic, A., Larson, M.: Generating visual summaries of geographic areas using community-contributed images. IEEE Trans. Multimedia 15(4), 921–932 (2013)CrossRefGoogle Scholar
  18. 18.
    Statistics Netherlands. Neighbourhood statistics. https://www.cbs.nl/nl-nl/maatwerk/2015/48/kerncijfers-wijken-en-buurten-2014. Accessed Nov 2015
  19. 19.
    Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015Google Scholar
  21. 21.
    Thomee, B., Arapakis, I., Shamma, D.A.: Finding social points of interest from georeferenced and oriented online photographs. ACM Trans. Multimedia Comput. Commun. Appl. 12(2), 36:1–36:23 (2016)CrossRefGoogle Scholar
  22. 22.
    Thomee, B., Rae, A.: Uncovering locally characterizing regions within geotagged data. In: Proceedings of the 22nd International Conference on World Wide Web, WWW 2013, pp. 1285–1296 (2013)Google Scholar
  23. 23.
    Toole, J.L., Ulm, M., González, M.C., Bauer, D.: Inferring land use from mobile phone activity. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, UrbComp 2012, pp. 1–8. ACM, New York (2012)Google Scholar
  24. 24.
    Trevisiol, M., Jégou, H., Delhumeau, J., Gravier, G.: Retrieving geo-location of videos with a divide & conquer hierarchical multimodal approach. In: Proceedings of the 3rd ACM International Conference on Multimedia Retrieval, ICMR 2013, pp. 1–8. ACM, New York (2013)Google Scholar
  25. 25.
    Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Yin, H., Cui, B., Huang, Z., Wang, W., Wu, X., Zhou, X.: Joint modeling of users’ interests and mobility patterns for point-of-interest recommendation. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM 2015, pp. 819–822. ACM, New York (2015)Google Scholar
  27. 27.
    Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and POIs. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 186–194. ACM, New York (2012)Google Scholar
  28. 28.
    Zahálka, J., Rudinac, S., Worring, M.: Interactive multimodal learning for venue recommendation. IEEE Trans. Multimedia 17(12), 2235–2244 (2015)CrossRefGoogle Scholar
  29. 29.
    Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. 5(3), 38:1–38:55 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Informatics InstituteUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations