Skip to main content

Object-Based Aggregation of Deep Features for Image Retrieval

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10132))

Included in the following conference series:

  • 3325 Accesses

Abstract

In content-based visual image retrieval, image representation is one of the fundamental issues in improving retrieval performance. Recently Convolutional Neural Network (CNN) features have shown their great success as a universal representation. However, the deep CNN features lack invariance to geometric transformations and object compositions, which limits their robustness for scene image retrieval. Since a scene image always is composed of multiple objects which are crucial components to understand and describe the scene, in this paper we propose an object-based aggregation method over the CNN features for obtaining an invariant and compact image representation for image retrieval. The proposed method represents an image through VLAD pooling of CNN features describing the underlying objects, which make the representation robust to spatial layout of objects in the scene and invariant to general geometric transformations. We evaluate the performance of the proposed method on three public ground-truth datasets by comparing with state-of-the-art approaches and promising improvements have been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_38

    Google Scholar 

  2. Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: BING: binarized normed gradients for objectness estimation at 300fps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3286–3293 (2014)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  4. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: ICML, pp. 647–655 (2014)

    Google Scholar 

  5. Douze, M., Ramisa, A., Schmid, C.: Combining attributes and fisher vectors for efficient image retrieval. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 745–752. IEEE (2011)

    Google Scholar 

  6. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  7. Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 392–407. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10584-0_26

    Google Scholar 

  8. Jégou, H., Chum, O.: Negative evidences and co-occurences in image retrieval: the benefit of PCA and whitening. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 774–787. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33709-3_55

    Chapter  Google Scholar 

  9. Jégou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88682-2_24

    Chapter  Google Scholar 

  10. Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Perez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1704–1716 (2012)

    Article  Google Scholar 

  11. Jégou, H., Zisserman, A.: Triangulation embedding and democratic aggregation for image search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3310–3317 (2014)

    Google Scholar 

  12. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. Nie, L., Wang, M., Zha, Z., Li, G., Chua, T.S.: Multimedia answering: enriching text QA with media information. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 695–704. ACM (2011)

    Google Scholar 

  15. Nie, L., Wang, M., Zhang, L., Yan, S., Zhang, B., Chua, T.S.: Disease inference from health-related questions via sparse deep learning. IEEE Trans. Knowl. Data Eng. 27(8), 2107–2119 (2015)

    Article  Google Scholar 

  16. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 2161–2168. IEEE (2006)

    Google Scholar 

  17. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)

    Google Scholar 

  18. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  19. Perronnin, F., Liu, Y., Sánchez, J., Poirier, H.: Large-scale image retrieval with compressed fisher vectors. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3384–3391. IEEE (2010)

    Google Scholar 

  20. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  21. Reddy Mopuri, K., Venkatesh Babu, R.: Object level deep feature pooling for compact image representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 62–70 (2015)

    Google Scholar 

  22. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 1470–1477. IEEE (2003)

    Google Scholar 

  23. Sun, S., Zhou, W., Tian, Q., Li, H.: Scalable object retrieval with compact image representation from generic object regions. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 12(2), 29 (2016)

    Google Scholar 

  24. Tang, J., Hong, R., Yan, S., Chua, T.S., Qi, G.J., Jain, R.: Image annotation by kNN-sparse graph-based label propagation over noisily tagged web images. ACM Trans. Intell. Syst. Technol. (TIST) 2(2), 14 (2011)

    Google Scholar 

  25. Tang, S., Zheng, Y.T., Wang, Y., Chua, T.S.: Sparse ensemble learning for concept detection. IEEE Trans. Multimed. 14(1), 43–54 (2012)

    Article  Google Scholar 

  26. Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  27. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3360–3367. IEEE (2010)

    Google Scholar 

  28. Yang, Y., Shen, F., Shen, H.T., Li, H., Li, X.: Robust discrete spectral hashing for large-scale image semantic indexing. IEEE Trans. Big Data 1(4), 162–171 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Funds of China (61472059, 61428202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haojie Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bao, Y., Li, H. (2017). Object-Based Aggregation of Deep Features for Image Retrieval. In: Amsaleg, L., Guðmundsson, G., Gurrin, C., Jónsson, B., Satoh, S. (eds) MultiMedia Modeling. MMM 2017. Lecture Notes in Computer Science(), vol 10132. Springer, Cham. https://doi.org/10.1007/978-3-319-51811-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51811-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51810-7

  • Online ISBN: 978-3-319-51811-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics