Skip to main content

The Use of a Bulky Boryl-Substituted Amide Ligand in Low-Oxidation State Group 14 Element Chemistry

  • Chapter
  • First Online:
On the Catalytic Efficacy of Low-Oxidation State Group 14 Complexes

Part of the book series: Springer Theses ((Springer Theses))

  • 409 Accesses

Abstract

This chapter describes the synthesis and application of a novel boryl silyl amide ligand in low-oxidation state, low-coordinate group 14 chemistry. This is, in part, related to chmistry discussed in previous chapters: the synthesis of group 14 halide complexes using monodentate ligands (Chap. 2), the synthesis and reactivity of heavier alkyne analogues (Chap. 3), and the synthesis and reactivity of heavier carbene analogues (Chaps. 4 and 5). The application of this novel ligand system, however, has allowed for the isolation of the first acyclic bis(amido) silylene, tin(II) catalysed ketone hydrosilylation, and related significant discoveries, truly highlighting the importance of ligand design in such fundamental chemistry research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. West R, Fink MJ, Michl J (1981) Tetramesityldisilene, a stable compound containing a silicon-silicon double bond. Science 214:1343

    Article  CAS  Google Scholar 

  2. Lee GH, West R, Müller T (2003) Bis[bis(trimethylsilyl)amino]silylene, an unstable divalent silicon compound. J Am Chem Soc 125:8114

    Article  CAS  Google Scholar 

  3. Harris DH, Lappert MF (1974) Monomeric, volatile bivalent amides of group IVB elements, M(NR1 2)2 and M(NR1R2)2(M = Ge, Sn, or Pb; R1 = Me3Si, R2 = Me3C). JCS Chem Commun 21:895

    Google Scholar 

  4. Gynane MJS, Harris DH, Lappert MF, Power PP, Rividre P, Rividre-Baudet M (1977) Subvalent Group 4B metal alkyls and amides. Part 5. The synthesis and physical properties of thermally stable amides of germanium(II), tin(II), and lead(II). JCS Dalton 7:2004

    Google Scholar 

  5. Denk MJ, Lennon R, Hayashi R, West R, Belyakov LV, Verne HP, Haaland A, Wagner M, Metzler N (1994) Synthesis and structure of a stable silylene. J Am Chem Soc 116:2691

    Article  CAS  Google Scholar 

  6. Gehrhus B, Lappert MF, Heinicke J, Boesec R, Blaser DJ (1995) Synthesis, structures and reactions of new thermally stable silylenes. Chem Soc Chem Commun 1931

    Google Scholar 

  7. Haaf M, Schmiedl A, Schmedake TA, Powell DR, Millevolte AJ, Denk M, West R (1998) Synthesis and reactivity of a stable silylene. J Am Chem Soc 120:12714

    Article  CAS  Google Scholar 

  8. Rekken BD, Brown TM, Fettinger JC, Tuononen HM, Power PP (2012) Isolation of a stable, acyclic, two-coordinate silylene. J Am Chem Soc 134:6504

    Article  CAS  Google Scholar 

  9. Protchenko AV, Birjkumar KH, Dange D, Schwarz AD, Vidovic D, Jones C, Kaltsoyannis N, Mountford P, Aldridge S (2012) A stable two-coordinate acyclic silylene. J Am Chem Soc 134:6500

    Article  CAS  Google Scholar 

  10. Protchenko AV, Schwarz AD, Blake MP, Jones C, Kaltsoyannis N, Mountford P, Aldridge S (2013) A generic one-pot route to acyclic two-coordinate silylenes from silicon(IV) precursors: Synthesis and Structural Characterization of a Silylsilylene. Angew Chem Int Ed 52:568

    Google Scholar 

  11. Mizuhata Y, Sasamori T, Tokitoh N (2009) Stable heavier carbene analogues. Chem Rev 109:3479

    Article  CAS  Google Scholar 

  12. Frey GD, Lavallo V, Donnadieu B, Schoeller WW, Bertrand G (2007) Facile splitting of hydrogen and ammonia by nucleophilic activation at a single carbon center. Science 316:439

    Article  CAS  Google Scholar 

  13. Lips F, Fettinger JC, Mansikkamäki A, Tuononen HM, Power PP (2014) Reversible complexation of ethylene by a silylene under ambient conditions. J Am Chem Soc 136:634

    Article  CAS  Google Scholar 

  14. Rodriguez R, Gau D, Kato T, Saffon-Merceron N, de Cózar A, Cossío FP, Baceiredo A (2011) Reversible binding of ethylene to silylene–phosphine complexes at room temperature. Angew Chem Int Ed 50:10414

    Article  CAS  Google Scholar 

  15. Power PP (2003) Silicon, germanium, tin and lead analogues of acetylenes. Chem Commun 17:2091

    Google Scholar 

  16. Ghadwal RS, Roesky HW, Pröpper K, Dittrich B, Klein S, Frenking G (2011) A dimer of silaisonitrile with two-coordinate silicon atoms. Angew Chem Int Ed 50:5374

    Article  CAS  Google Scholar 

  17. Sekiguchi A, Kinjo R, Ichinohe M (2004) A stable compound containing a silicon-silicon triple bond. Science 305:1755

    Article  CAS  Google Scholar 

  18. Inoue S, Eisenhut C (2013) A dihydrodisilene transition metal complex from an N-heterocyclic carbene-stabilized silylene monohydride. J Am Chem Soc 135:18315

    Article  CAS  Google Scholar 

  19. Driess M, Yao S, Brym M, van Wüllen C, Lentz D (2006) A new type of N-heterocyclic silylene with ambivalent reactivity. J Am Chem Soc 128:9628

    Google Scholar 

  20. Woodul WD, Carter W, Müller R, Richards AF, Stasch A, Kaupp M, Murphy DM, Driess M, Jones C (2011) A neutral, monomeric germanium(I) radical. J Am Chem Soc 133:10074

    Article  CAS  Google Scholar 

  21. Lappert MF, Protchenko AV, Power PP, Seeber AL (2008) Metal amide chemistry. Wiley, New Jersey

    Google Scholar 

  22. Weber L, Dobber E, Stammle HG, Neumann B, Boese R, Bläser D (1997) Reaction of 1,3-Dialkyl-4,5-dimethylimidazol-2-ylidenes with 2-Bromo-2,3-dihydro-1H-1,3,2-diazaboroles (Alkyl=iPr and tBu). Chem Ber 130:705

    Article  CAS  Google Scholar 

  23. Weber L, Kahlert J, Böhling L, Brockhinke A, Stammler HG, Neumann B, Harder RA, Lowb PJ, Fox MA (2013) Electrochemical and spectroelectrochemical studies of C-benzodiazaborolyl-ortho-carboranes. Dalton Trans 42:2266

    Article  CAS  Google Scholar 

  24. Segawa Y, Suzuki Y, Yamashita M, Nozaki K (2008) Chemistry of boryllithium: Synthesis, structure, and reactivity. J Am Chem Soc 130:16069

    Article  CAS  Google Scholar 

  25. Li J, Schenk C, Goedecke C, Frenking G, Jones C (2011) A digermyne with a Ge–Ge single bond that activates dihydrogen in the solid state. J Am Chem Soc 133:18622

    Article  CAS  Google Scholar 

  26. Sasamori T, Sugiyama Y, Takeda N, Tokitoh N (2005) Structure and properties of an overcrowded 1,2-Dibromodigermene. Organometallics 24:3309

    Article  CAS  Google Scholar 

  27. Duong HA, Tekavec TA, Arif AM, Louie J (2004) Reversible carboxylation of N-heterocyclic carbenes. Chem Commun 1:112

    Google Scholar 

  28. Filippou AC, Chernov O, Schnakenburg G (2009) Lewis base stabilized dichlorosilylene.  Angew Chem Int Ed 48:5687

    Article  CAS  Google Scholar 

  29. Zhou H, Zhang WZ, Liu CH, Qu JP, Lu XB (2008) CO2 adducts of N-heterocyclic carbenes: Thermal stability and catalytic activity toward the coupling of CO2 with epoxides. J Org Chem 73:8039

    Article  CAS  Google Scholar 

  30. Wraage K, Schmidt HG, Noltemeyer M, Roesky HW (1999) Preparation and structural investigations of (dippNSiMe3Si)2(Cp*Ti)2(NH)6 (dipp = 2,6-iPr2C6H3), [dippNSiMe3Si(NH2)NH]3 and [dippNSiMe3Ge(NH2)NH]3. Eur J Inorg Chem 5:863

    Google Scholar 

  31. Reiche C, Kliem S, Klingebiel U, Noltemeyer M, Voit C, Herbst-Irmer R, Schmatz S (2003) Aminosilanolates as precursors of four- and eight-membered (SiNSiO)-rings. J Organomet Chem 667:24

    Article  CAS  Google Scholar 

  32. Goodwin C, Smith A, Ortu F, Vitorica-Yrzebal I, Mills D (2015) Salt metathesis versus protonolysis routes for the synthesis of silylamide Hauser base (R2NMgX; X = halogen) and amido-Grignard (R2NMgR) complexes. Dalton Trans 45:6004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrance John Hadlington .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hadlington, T.J. (2017). The Use of a Bulky Boryl-Substituted Amide Ligand in Low-Oxidation State Group 14 Element Chemistry. In: On the Catalytic Efficacy of Low-Oxidation State Group 14 Complexes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-51807-7_6

Download citation

Publish with us

Policies and ethics