Skip to main content

The Genomization of Biology: Counterbalancing Radical Reductionism

  • Chapter
  • First Online:
History of Human Genetics

Abstract

The term ‘genome’ was coined in 1920 by the German botanist Hans Winkler to describe the genetic material contained in the cell nucleus. Winkler’s idea was a holistic one that emphasized the relationship between the material in the nucleus and the cytoplasm. With the passage of time, this original idea has been modified in parallel with scientific and technological progress that has led to holism being sidelined in favour of an increasingly radical reductionism. These advances have brought about significant changes in the understanding of the phenomena of heredity, from the heuristic power of the concept of the genome, resulting eventually in ‘genomization’, that is to say, seeking understanding of the phenomena of inheritance exclusively through the ‘understanding’ of genomic material in physical terms, taking a step beyond ‘geneticization’. In this paper, we present the way in which genomization has followed a path that parallels the progress in genome studies, with the consolidation of the genomization of biology deriving from achievements such as the Human Genome Project and the consequent reassertion of reductionism as the dominant view. We will base our reconstruction on the original material of the authors who contributed to the knowledge of the genome, during the twentieth century in particular, combined with reflections on the impact of genomization on different fields of knowledge down the years. In this way, we hope to put forward a proposal that not only emphasizes the need to reconsider the way in which the historiography of biology has been carried out but also the impact that radical reductionism has had on the understanding and dissemination of contemporary biology.

This essay is an expanded and revised version of Noguera-Solano et al., 2013. The original version was presented at the Fifth International Workshop on the History of Human Genetics: ‘The Biological Future of Man: Continuities and Breaks in the History of Human Genetics, Before and After 1945’, Nuremberg, Germany, June 21–23, 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Winkler 1920.

  2. 2.

    Noguera-Solano et al. 2013.

  3. 3.

    Winkler 1924a.

  4. 4.

    Noguera-Solano et al. 2013, 218.

  5. 5.

    Ibid.

  6. 6.

    Ibid.

  7. 7.

    Ibid.

  8. 8.

    Ibid.

  9. 9.

    Ibid.

  10. 10.

    Harwood 1984.

  11. 11.

    At this point, we would like to make a terminological clarification. As noted by Dutch physician and bioethicist Henk ten Have, explicit mention of geneticization began in the early 1990s with the work of Abby Lippman (1991, 1992, 1993), i.e., the extreme emphasis given to the use of genetic techniques, as well as the interpretation and description of health issues and disease based only on genetic explanations. In ten Have’s words, ‘this process implies a redefinition of individuals in terms of deoxyribonucleic acid (DNA) codes, a new language to describe and interpret human life and behavior in a genomic vocabulary of codes, blueprints, traits, dispositions, genetic mapping and a gene-technological approach to disease, health and the body’ (ten Have, 2012). As we will see throughout the text, geneticization to genomization can even be thought of as synonyms, although the difference arises from the scope of the respective disciplines, genetics and genomics, and in that sense, the transition is from a more restricted to a broader vision, though always within the scope of reductionism.

  12. 12.

    F.e. Lane 1997; Clarke 2003; Midanik 2004; Rock et al. 2007; Bell 2010.

  13. 13.

    We use the term in a similar sense to Lane, 1997; Clarke 2003; Midanik 2004; Rock et al. 2007; Bell 2010, among others, though with certain differences, as we note below.

  14. 14.

    Harwood 1993.

  15. 15.

    On the topic of nuclear monopoly, see: Sapp 1987, 54–86; Harwood 1993, 315–350.

  16. 16.

    East 1934—The nucleus-plasma problem. Amer. Nat. 63: 289–303; 402–439.

  17. 17.

    East 1934, 300.

  18. 18.

    Winkler 1908.

  19. 19.

    In German: “...den haploiden Chromosomensatz, der im Verein mit dem zugehörigen Protoplasma die materielle Grundlage der systematischen Einheit darstellt, den Ausdruck”. Winkler, 1920, 165. (Haploid chromosome: halving the chromosome number).

  20. 20.

    Noguera-Solano et al. 2013, 213.

  21. 21.

    Harwood 1984.

  22. 22.

    Harwood 1984.

  23. 23.

    Winkler, 1924a. F.e. see Pangene. In: Winkler, 1908,149; Genotype. In: Winkler 1924, 238; Morgan’s theory. In: Winkler 1924a, 240–241.

  24. 24.

    Harwood 1993.

  25. 25.

    Von Wettstein 1924; von Wettstein 1926, 259.

  26. 26.

    Noguera-Solano et al. 2013, 214.

  27. 27.

    Demerec 1933.

  28. 28.

    Noguera-Solano et al. 2013, 214.

  29. 29.

    Esposito 2013.

  30. 30.

    Noguera-Solano et al. 2013, 214.

  31. 31.

    The Oxford English Dictionary (OED) provides an etymology of the term coined by Winkler, Genome, consisting of an irregular form of gene + soma, the latter derived from chromosome, whereas Lederberg suggests an alternative etymology. ‘As a botanist, Winkler must have been familiar with … –ome, … signifying the collectivity of the units in the stem’. Therefore, the genome should be understood as all genes collectively. See Lederberg 2001.

  32. 32.

    Winkler 1924b.

  33. 33.

    F.e. Emes 2003; Branco-Price 2005; Bonilla-Rosso 2008.

  34. 34.

    See for instance Cytologia I (1930), 14; Müntzing 1930, 293.

  35. 35.

    Jones 1932, 275; 369.

  36. 36.

    See for instance Müntzing 1932; Müntzing 1935; Krishnaswamy 1939.

  37. 37.

    Dobzhansky 1951, 216–217.

  38. 38.

    Barthelmess 1952, 293.

  39. 39.

    Rostand 1957, 26.

  40. 40.

    Jinks 1964, 4–5.

  41. 41.

    Muller 1962, 175.

  42. 42.

    Muller 1962, 188.

  43. 43.

    C. H. Waddington, for example, uses terms such as genotype, nuclear material, collection of genes, and entire set of hereditary factors to discuss the material of heredity. See Waddington, 1939, 137; 322.

  44. 44.

    See f.e. Esposito 2013, 95–102, 141–143.

  45. 45.

    From Stent’s view, ‘the genome was the sum total of all genes of an individual’; see Stent, 1978, 15; 382.

  46. 46.

    James Watson defined the genome first as haploid set of chromosomes, with their associated genes. See Watson, 1970, 705.

  47. 47.

    Dobzhansky 1970, 345.

  48. 48.

    Dobzhansky 1970, 385–386.

  49. 49.

    Noguera-Solano et al. 2013, 215.

  50. 50.

    Noguera-Solano et al. 2013, 215–216.

  51. 51.

    Jacob 1961, 254.

  52. 52.

    Reardon 2005; López Beltrán, 2011; Wae 2014.

  53. 53.

    Rock et al. 2007; Galesi 2014.

  54. 54.

    Smith 1986, 674–679.

  55. 55.

    Nagl et al. 1979.

  56. 56.

    Noguera-Solano et al. 2013, 216.

  57. 57.

    Dyson 1999.

  58. 58.

    Noguera-Solano et al. 2013, 216.

  59. 59.

    Galesi 2014, 173.

  60. 60.

    Galesi 2014, 184.

  61. 61.

    Noguera-Solano et al. 2013, 216.

  62. 62.

    Ibid.

  63. 63.

    López Beltrán, 2011, 12.

  64. 64.

    On the social implications of genomic studies, see also Reardon, 2005; Wade et al. 2014.

  65. 65.

    Sanger 1977.

  66. 66.

    Report of the Department of Energy, Human Genome News, 1990.

  67. 67.

    Smith 1995.

  68. 68.

    Metting 1997.

  69. 69.

    Noguera-Solano et al. 2013, 217.

  70. 70.

    Ibid.

  71. 71.

    By this we are referring to disciplines that arose from the HGP, for example, proteomics, metabolomics, transcriptomics, lipidomics, as well as all the others that continue to emerge. A general definition of the suffix is ‘Omics is a general term for a broad discipline of science and engineering for analyzing the interactions of biological information objects in various ‘omes’. […] The main focus is on: (1) mapping information objects such as genes, proteins, and ligands; (2) finding interaction relationships among the objects; (3) engineering the networks and objects to understand and manipulate the regulatory mechanisms; and (4) integrating various omes and omics subfields’. See about this site: Omics. (n.d.). Retrieved 2 August 2016, from http://www.nature.com/omics/about/index.html

  72. 72.

    As a point of general interest, Margulis made the original proposal while married to Carl Sagan, which is why her surname is so given.

  73. 73.

    Sagan 1967.

  74. 74.

    Noguera-Solano et al. 2013, 218.

  75. 75.

    Ibid.

  76. 76.

    See f.e. Nicholson y Gawne, 2015.

References

  • Barthelmess, Alfred. (1952). Vererbungswissenschaft, Freiburg: Orbis Academicus.

    Google Scholar 

  • Bell, Susan E., & Figert, Anne E. Gender and the Medicalization of Gender (pp. 107-122). In Kuhlmann, E., & Annandale, E. (Eds.). (2012). The Palgrave Handbook of Gender and Healthcare (2°). London: Palgrave Macmillan.

    Google Scholar 

  • Bonilla-Rosso, Germán, Valeria Souza, Luis E. Eguiarte (2008): Metagenómica, genómica y ecología molecular: la nueva ecología en el bicentenario de Darwin. [Metagenomics, genomics and molecular biology: the new ecology at Darwin’s bicentennial.] Tip. Revista Especializada en Ciencias Químico-Biológicas 11(1): 41-51.

    Google Scholar 

  • Branco-Price, Cristina et al. (2005): Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Annals of botany 96(4), 647-660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke, Adele E. et al. (2003): Biomedicalization: Technoscientific Transformations of Health, Illness, and U.S. Biomedicine. American Sociological Review 68(2), 161-194.

    Article  Google Scholar 

  • Demerec, Milislav (1933): What is a gene? The Journal of Heredity 24: 369-379

    Google Scholar 

  • Dobzhansky, Theodosius (1951): Genetics and the Origin of the species. 3rd ed. New York: Columbia Univ. Pr.

    Google Scholar 

  • Dobzhansky, Theodosius (1970): Genetics of the Evolutionary Process. New York: Columbia Univ. Pr.

    Google Scholar 

  • Dyson, Freeman J. (1999): The Sun, the Genome & the Internet: Tools of Scientific Revolutions. Oxford: Oxford Univ. Pr.

    Google Scholar 

  • East, Edward M. (1934): The Nucleus-Plasma Problem. The American Naturalist 68 (717): 289-303.

    Article  Google Scholar 

  • Emes, Richard D. et al. (2003): Comparison of the genomes of human and mouse lays the foundation of genome zoology. Human molecular genetics 12 (7): 701-709.

    Article  CAS  PubMed  Google Scholar 

  • Esposito, Maurizio (2013): Romantic Biology, 1890–1945. London: Pickering & Chatto.

    Google Scholar 

  • Galesi, Davide (2014): Towards the Genomization of Food? Potentials and Risks of Nutrigenomics as a Way of Personalized Care and Prevention. Italian Sociological Review 4 (2): 173–187.

    Google Scholar 

  • Harwood, Jonathan (1984): The Reception of Morgan’s Chromosome Theory in Germany: Inter-War Debate over Cytoplasmic Inheritance. Medizinhistorisches Journal 19 (1/2): 3-32.

    CAS  PubMed  Google Scholar 

  • Harwood, Jonathan (1993): Style of Scientific Thought. The German Genetics Community 1900-1933. Chicago: The Chicago Univ. Pr.

    Google Scholar 

  • Jacob, François, Jacques Monod (1961): Genetic Regulatory Mechanisms in the Synthesis of Proteins. Journal of the Molecular Biology 3: 318-356.

    Google Scholar 

  • Jinks, John L. (1964): Extrachromosomal inheritance. Prentice-Hall.

    Google Scholar 

  • Jones, Donald F. (ed.) (1932): Proceedings of the 6th International Congress of Genetics, Ithaca, New York. Genetics Society of America.

    Google Scholar 

  • Krishnaswamy, N. (1939): Cytological studies in a haploid plant of Triticum vulgare. Hereditas, 25 (1): 77-86.

    Article  Google Scholar 

  • Lane, Ann M. (1997): Hannah Arendt: Theorist of Distinction(s). Political Theory 25 (1): 137-159.

    Article  Google Scholar 

  • Lederberg, Joshua (2001): ‘Ome sweet’ omics– a genealogical treasury of words. The Scientist, 15(7): 8. Available online: http://www.the-scientist.com/?articles.view/articleNo/13313/title/-Ome-Sweet--Omics---A-Genealogical-Treasury-of-Words/ (Consulted 29 July 2016).

  • Lippman, Abby (1991): Prenatal Genetic Testing and Screening: Constructing Needs and Reinforcing Inequities. American Journal of Law & Medicine 17 (1/2): 15-50.

    CAS  Google Scholar 

  • Lippman, Abby (1992): Led (astray) by genetic maps: The cartography of the human genome and health care. Social Science & Medicine 35 (12): 1469-1476.

    Article  CAS  Google Scholar 

  • Lippman, Abby (1993): Prenatal Genetic Testing and Geneticization: Mother Matters for All. Fetal Diagnosis and Therapy 8 (1): 175-188.

    Article  PubMed  Google Scholar 

  • López Beltrán, C. (Ed.) (2011): Genes (&) Mestizos. Genómica y raza en la biomedicina mexicana. [Genomics and Race in Mexican Biomedicine] México: Ficticia-UNAM.

    Google Scholar 

  • Metting, F. B., M. F. Romine (1997): Rapid sequencing of microbial genomes opens door to functional genomics. Human Genome News 8 (3-4): 1-4.

    Google Scholar 

  • Midanik, Lorraine T. (2004): Biomedicalization and Alcohol Studies: Implications for Policy. Journal of Public Health Policy 25 (2): 211-228.

    Article  PubMed  Google Scholar 

  • Muller, Hermann J. (1962a): Variation due to Chance in the Individual Gene. In: Studies in genetics: the selected papers of H.J. Muller. Bloomington: Indiana Univ. Pr.

    Google Scholar 

  • Muller, Hermann J. (1962b): The Gene as the basis of the life. In: Studies in genetics: the selected papers of H.J. Muller. Bloomington: Indiana University Press.

    Google Scholar 

  • Müntzing, Arne (1930): Outlines to a genetic monograph of the genus Galeopsis with special reference to the nature and inheritance of partial sterility. Hereditas 13: 185-341.

    Article  Google Scholar 

  • Müntzing, Arne (1932): Cyto-genetic investigations on synthetic Galeopsis tetrahit. Hereditas 16 (1/2): 105-154.

    Google Scholar 

  • Müntzing, Arne (1935): Triple hybrids between rye and two wheat species. Hereditas 20 (1/2): 137-160.

    Google Scholar 

  • Nagl, Walter, Vera Hemleben, Friedrich Ehrendorfer (Eds.). (1979): Genome and Chromatin: Organization, Evolution, Function. Vol. 2. Vienna: Springer Vienna.

    Google Scholar 

  • Nicholson, Daniel J., Richard Gawne. (2015): Neither logical empiricism nor vitalism, but organicism: what the philosophy of biology was. History and Philosophy of the Life Sciences, 37 (4): 345–381.

    Article  PubMed  Google Scholar 

  • Noguera-Solano, Ricardo, Rosaura Ruiz-Gutierrez, Juan M. Rodriguez-Caso (2013): Genome: twisting stories with DNA. Endeavour 37 (4): 213-219.

    Article  PubMed  Google Scholar 

  • Reardon, Jenny (2005): Race to the Finish: Identity and Governance in an Age of Genomics. Princeton: Univ. Pr.

    Google Scholar 

  • Rock, Melanie, Eric Mykhalovskiy, Thomas Schlich (2007): People, other animals and health knowledges: Towards a research agenda. Social Science & Medicine 64 (9): 1970-1976.

    Article  Google Scholar 

  • Rostand, Jean (1957): Pensées d’un biologist [Thoughts of a Biologist]. France, Club Français du Livre.

    Google Scholar 

  • Sagan, Lynn (1967): On the origin of mitosing cells. Journal of Theoretical Biology 14 (3): 225–274.

    Article  CAS  Google Scholar 

  • Sanger, F., S. Nicklen, A. R. Coulson (1977): DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences 74: 5463–5467.

    Article  CAS  Google Scholar 

  • Sapp, Jan (1987): Beyond the Gen. Cytoplasmic Inheritance and the Struggle for Authority in Genetics. Oxford: Oxford Univ. Pr.

    Google Scholar 

  • Smith, Lloyd M. et al. (1986): Fluorescence detection in automated DNA sequence analysis. Nature 321 (6071): 674-679.

    Google Scholar 

  • Smith, Hamilton O. et al. (1995): Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science 269 (5223): 538-540.

    Article  CAS  PubMed  Google Scholar 

  • Stent, Gunter S. (1978): Molecular Genetics; an Introductory Narrative. 2nd ed. San Francisco: W.H. Freeman.

    Google Scholar 

  • ten Have, Henk AMJ (2012): Geneticisation: Concept. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0005896.pub2]

  • von Wettstein, Fritz (1924): Morphologie und Physiologie des Formwechels der Moose auf genetischer Grundlage. [Morphology and physiology of the transformation of the Moose on a genetic basis] Z. Indukt. Abstamm. - u. Vererb. Lehre 33: 1-236.

    Google Scholar 

  • von Wettstein, Fritz (1926): Über plasmatische Vererbung, sowie Plasma- und Genwirkung. [On Plasmatic Inheritance, as well as Plasma and Gene Action.] Nachr. Ges. Wiss. Gött. Math.-physikal. Kl.. 250-281.

    Google Scholar 

  • Waddington, Conrad H. (1939): An introduction to modern genetics. New York: The Macmillan Company.

    Google Scholar 

  • Wade, Peter et al. (eds.). (2014): Mestizo genomics: race mixture, nation, and science in Latin America. Durham: Duke Univ. Pr.

    Google Scholar 

  • Watson, James D. (1970): Molecular Biology of the Gene. 2nd ed. New York: W.A. Benjamin.

    Google Scholar 

  • Winkler, Hans (1908): Parthenogenesis und Apogamie im Pflanzenreiche.[Parthenogenesis and Apogamy in the Vegetable Kingdom.] Jena: G. Fischer.

    Google Scholar 

  • Winkler, Hans (1920): Verbreitung und Ursache der Parthenogenesis im Pflanzen und Tierreiche.[The Spread and Cause of Parthenogenesis in the Plant and Animal Kingdoms]. Jena: G. Fischer.

    Google Scholar 

  • Winkler, Hans (1924a): Über die Rolle von Kern und Plasma bei der Vererbung. [On the Role of the Nucleus and Cytoplasm in Heredity] ZIAV. 33: 238–253.

    Google Scholar 

  • Winkler, Hans. (1924b): Die Methoden des Pfropfing bei Pflanzen. [Methods of Grafting in Plants]. Abderhalden, E. (eds.): Handbuch biologischer Arbeitsmethoden. 2nd ed., Vol. 11. 760-800.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Noguera-Solano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Noguera-Solano, R., Ruiz-Gutierrez, R., Rodriguez-Caso, J.M. (2017). The Genomization of Biology: Counterbalancing Radical Reductionism. In: Petermann, H., Harper, P., Doetz, S. (eds) History of Human Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-51783-4_8

Download citation

Publish with us

Policies and ethics