Skip to main content

Vertex Sparsification in Trees

  • Conference paper
  • First Online:
  • 615 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10138))

Abstract

Given an unweighted tree \(T=(V,E)\) with terminals \(K \subset V\), we show how to obtain a 2-quality vertex flow and cut sparsifier H with \(V_H = K\). We prove that our result is essentially tight by providing a \(2-o(1)\) lower-bound on the quality of any cut sparsifier for stars.

In addition we give improved results for quasi-bipartite graphs. First, we show how to obtain a 2-quality flow sparsifier with \(V_H = K\) for such graphs. We then consider the other extreme and construct exact sparsifiers of size \(O(2^{k})\), when the input graph is unweighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Alternatively, one can view this step as contracting an arbitrary child-edge of v.

  2. 2.

    Note that the dual requires that \(\delta _{st}\) is at most the length of the shortest s-t path. In our scenario this is always a 2-hop path. Hence, the above formulation is correct.

References

  1. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product queries. Technical report, Tel Aviv University (1987)

    Google Scholar 

  2. Andersen, R., Feige, U.: Interchanging distance and capacity in probabilistic mappings. CoRR, arXiv:abs/0907.3631 (2009)

  3. Andoni, A., Gupta, A., Krauthgamer, R.: Towards (1+ \(\varepsilon \))-approximate flow sparsifiers. In: Proceedings of the 25th SODA, pp. 279–293 (2014)

    Google Scholar 

  4. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in Õ(n\({}^{\text{2}}\)) time. In: Proceedings of the 28th STOC, pp. 47–55 (1996)

    Google Scholar 

  5. Chekuri, C., Shepherd, F.B., Oriolo, G., Scutellà, M.G.: Hardness of robust network design. Networks 50(1), 50–54 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cheung, Y.K., Goranci, G., Henzinger, M.: Graph minors for preserving terminal distances approximately - lower and upper bounds. In: Proceedings of the 43rd ICALP, pp. 131:1–131:14 (2016)

    Google Scholar 

  7. Chuzhoy, J.: On vertex sparsifiers with steiner nodes. In: Proceedings of the 44th STOC, pp. 673–688 (2012)

    Google Scholar 

  8. Gupta, A.: Steiner points in tree metrics don’t (really) help. In: Proceedings of the 12th SODA, pp. 220–227 (2001)

    Google Scholar 

  9. Hagerup, T., Katajainen, J., Nishimura, N., Ragde, P.: Characterizing multiterminal flow networks and computing flows in networks of small treewidth. J. Comput. Syst. Sci. 57(3), 366–375 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kamma, L., Krauthgamer, R., Nguyen, H.L.: Cutting corners cheaply, or how to remove steiner points. SIAM J. Comput. 44(4), 975–995 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  11. Khan, A., Raghavendra, P.: On mimicking networks representing minimum terminal cuts. Inf. Process. Lett. 114(7), 365–371 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Krauthgamer, R., Nguyen, H.L., Zondiner, T.: Preserving terminal distances using minors. SIAM J. Discrete Math. 28(1), 127–141 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Krauthgamer, R., Rika, I.: Mimicking networks and succinct representations of terminal cuts. In: Proceedings of the 24th SODA, pp. 1789–1799 (2013)

    Google Scholar 

  14. Leighton, F.T., Moitra, A.: Extensions and limits to vertex sparsification. In: Proceedings of the 42nd STOC, pp. 47–56 (2010)

    Google Scholar 

  15. Makarychev, K., Makarychev, Y.: Metric extension operators, vertex sparsifiers and lipschitz extendability. In: Proceedings of the 51th FOCS, pp. 255–264 (2010)

    Google Scholar 

  16. Moitra, A.: Approximation algorithms for multicommodity-type problems with guarantees independent of the graph size. In: Proceedings of the 50th FOCS (2009)

    Google Scholar 

  17. Räcke, H.: Optimal hierarchical decompositions for congestion minimization in networks. In: Proceedings of the 40th STOC, pp. 255–264 (2008)

    Google Scholar 

  18. Räcke, H., Shah, C., Täubig, H.: Computing cut-based hierarchical decompositions in almost linear time. In: Proceedings of the 25th SODA, pp. 227–238 (2014)

    Google Scholar 

  19. Spielman, D.A., Teng, S.: Spectral sparsification of graphs. SIAM J. Comput. 40(4), 981–1025 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gramoz Goranci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Goranci, G., Räcke, H. (2017). Vertex Sparsification in Trees. In: Jansen, K., Mastrolilli, M. (eds) Approximation and Online Algorithms. WAOA 2016. Lecture Notes in Computer Science(), vol 10138. Springer, Cham. https://doi.org/10.1007/978-3-319-51741-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51741-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51740-7

  • Online ISBN: 978-3-319-51741-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics