Skip to main content

Dynamic Traveling Repair Problem with an Arbitrary Time Window

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10138))

Included in the following conference series:

Abstract

We consider the online Dynamic Traveling Repair Problem (DTRP) with an arbitrary size time window. In this problem we receive a sequence of requests for service at nodes in a metric space and a time window for each request. The goal is to maximize the number of requests served during their time window. The time to traverse between two points is equal to the distance. Serving a request requires unit time. Irani et al., SODA 2002 considered the special case of a fixed size time window. In contrast, we consider the general case of an arbitrary size time window. We characterize the competitive ratio for each metric space separately. The competitive ratio depends on the relation between the minimum laxity (the minimum length of a time window) and the diameter of the metric space. Specifically, there exists a constant competitive algorithm only when the laxity is larger than the diameter. In addition, we characterize the rate of convergence of the competitive ratio, which approaches 1, as the laxity increases. Specifically, we provide matching lower and upper bounds. These bounds depend on the ratio between the laxity and the optimal TSP solution of the metric space (the minimum distance to traverse all nodes). An application of our result improves the previously known lower bound for colored packets with transition costs and matches the known upper bound. In proving our lower bounds we use an embedding with some special properties.

Supported in part by the Israel Science Foundation (grant No. 1506/16), by the Israeli Centers of Research Excellence (I-CORE) program, (Center No. 4/11) and by the Blavatnik Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arkin, E.M., Mitchell, J.S., Narasimhan, G.: Resource-constrained geometric network optimization. In: SOCG, pp. 307–316. ACM (1998)

    Google Scholar 

  2. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line travelling salesman. Eindhoven University of Technology, Department of Mathematics and Computing Sciences (1999)

    Google Scholar 

  3. Awerbuch, B., Azar, Y., Blum, A., Vempala, S.: New approximation guarantees for minimum-weight k-trees and prize-collecting salesmen. SIAM J. Comput. 28(1), 254–262 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Azar, Y., Feige, U., Gamzu, I., Moscibroda, T., Raghavendra, P.: Buffer management for colored packets with deadlines. In: SPAA 2009, pp. 319–327. ACM (2009)

    Google Scholar 

  5. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for Deadline-TSP and vehicle routing with time-windows. In: STOC, pp. 166–174. ACM (2004)

    Google Scholar 

  6. Bar-Yehuda, R., Even, G., Shahar, S.M.: On approximating a geometric prize-collecting traveling salesman problem with time windows. J. Algorithms 55(1), 76–92 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approximation algorithms for orienteering and discounted-reward TSP. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 46–55. IEEE (2003)

    Google Scholar 

  8. Chekuri, C., Korula, N.: Approximation algorithms for orienteering with time windows. arXiv preprint arXiv:0711.4825 (2007)

  9. Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related problems. ACM Trans. Algorithms (TALG) 8(3), 23 (2012)

    MATH  MathSciNet  Google Scholar 

  10. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX/RANDOM -2004. LNCS, vol. 3122, pp. 72–83. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27821-4_7

    Chapter  Google Scholar 

  11. Desrochers, M., Desrosiers, J., Solomon, M.: A new optimization algorithm for the vehicle routing problem with time windows. Oper. Res. 40(2), 342–354 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Desrochers, M., Lenstra, J.K., Savelsbergh, M.W., Soumis, F.: Vehicle routing with time windows: optimization and approximation. Veh. Routing: Methods Stud. 16, 65–84 (1988)

    MATH  MathSciNet  Google Scholar 

  13. Feuerstein, E., Stougie, L.: On-line single-server dial-a-ride problems. Theoret. Comput. Sci. 268(1), 91–105 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logist. 34(3), 307–318 (1987)

    Article  MATH  Google Scholar 

  15. Irani, S., Lu, X., Regan, A.: On-line algorithms for the dynamic traveling repair problem. J. Sched. 7(3), 243–258 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jaillet, P., Lu, X.: Online traveling salesman problems with rejection options. Networks 64(2), 84–95 (2014)

    Article  MathSciNet  Google Scholar 

  17. Karuno, Y., Nagamochi, H.: 2-approximation algorithms for the multi-vehicle scheduling problem on a path with release and handling times. Discrete Appl. Math. 129(2), 433–447 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Krumke, S.O., Megow, N., Vredeveld, T.: How to whack moles. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 192–205. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24592-6_15

    Chapter  Google Scholar 

  19. Nagamochi, H., Ohnishi, T.: Approximating a vehicle scheduling problem with time windows and handling times. Theoret. Comput. Sci. 393(1), 133–146 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Savelsbergh, M.W.: Local search in routing problems with time windows. Ann. Oper. Res. 4(1), 285–305 (1985)

    Article  MathSciNet  Google Scholar 

  21. Tan, K.C., Lee, L.H., Zhu, Q., Ou, K.: Heuristic methods for vehicle routing problem with time windows. Artif. Intell. Eng. 15(3), 281–295 (2001)

    Article  Google Scholar 

  22. Thangiah, S.R.: Vehicle Routing with Time Windows Using Genetic Algorithms. Citeseer (1993)

    Google Scholar 

  23. Tsitsiklis, J.N.: Special cases of traveling salesman and repairman problems with time windows. Networks 22(3), 263–282 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yossi Azar or Adi Vardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Azar, Y., Vardi, A. (2017). Dynamic Traveling Repair Problem with an Arbitrary Time Window. In: Jansen, K., Mastrolilli, M. (eds) Approximation and Online Algorithms. WAOA 2016. Lecture Notes in Computer Science(), vol 10138. Springer, Cham. https://doi.org/10.1007/978-3-319-51741-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51741-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51740-7

  • Online ISBN: 978-3-319-51741-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics