Skip to main content

Engineering Bacterial Sugar Catabolism and Tolerance Toward Lignocellulose Conversion

  • Chapter
  • First Online:
Engineering of Microorganisms for the Production of Chemicals and Biofuels from Renewable Resources

Abstract

Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals still remains a challenge. Biomass recalcitrance to saccharification, microbial sugar co-utilization and toxic chemicals associated with chemical pretreatments are at the center of the bottlenecks limiting further commercialization of lignocellulose conversion. Genetic and metabolic engineering has allowed researchers to manipulate microorganisms to overcome these challenges. In this chapter, a broad overview of the current knowledge and research efforts in two paramount areas is presented: (1) bacterial carbon catabolite repression and sugar co-utilization, and (2) microbial tolerance to inhibitors derived from lignocellulose pretreatments. Lastly, technological gaps and future directions for further improvements are discussed. This chapter will mainly focus on the relevant knowledge and research progress from the perspective of bacterial strain engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal M, Chen RR (2011) Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol Lett 33(11):2127–2133

    Article  CAS  PubMed  Google Scholar 

  • Almeida JR, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82(4):625–638

    Article  CAS  PubMed  Google Scholar 

  • Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9(3):258–267

    Article  CAS  PubMed  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568

    Article  CAS  PubMed  Google Scholar 

  • Badgujar KC, Bhanage BM (2015) Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges. Bioresour Technol 178:2–18

    Article  CAS  PubMed  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875

    Article  CAS  Google Scholar 

  • Balderas-Hernandez VE, Hernandez-Montalvo V, Bolivar F, Gosset G, Martinez A (2011) Adaptive evolution of Escherichia coli inactivated in the phosphotransferase system operon improves co-utilization of xylose and glucose under anaerobic conditions. Appl Biochem Biotechnol 163(4):485–496

    Article  CAS  PubMed  Google Scholar 

  • Baral NR, Shah A (2016) Techno-economic analysis of cellulose dissolving ionic liquid pretreatment of lignocellulosic biomass for fermentable sugars production. Biofuel Bioprod Bior 10(1):70–88

    Article  CAS  Google Scholar 

  • Barrick JE, Lenski RE (2013) Genome dynamics during experimental evolution. Nat Rev Genet 14(12):827–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder A, Fiechter A (1980) Delignification of plant biomass with ozone. Abs Pap Am Chem Soc 180(Aug):11-Micr

    Google Scholar 

  • Blencke HM, Homuth G, Ludwig H, Mader U, Hecker M, Stulke J (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng 5(2):133–149

    Article  CAS  PubMed  Google Scholar 

  • Bommarius AS, Sohn M, Kang Y, Lee JH, Realff MJ (2014) Protein engineering of cellulases. Curr Opin Biotechnol 29C:139–145

    Article  CAS  Google Scholar 

  • Brownell HH, Yu EKC, Saddler JN (1986) Steam-explosion pretreatment of wood—effect of chip size, acid, moisture-content and pressure-drop. Biotechnol Bioeng 28(6):792–801

    Article  CAS  PubMed  Google Scholar 

  • Bruder M, Moo-Young M, Chung DA, Chou CP (2015) Elimination of carbon catabolite repression in Clostridium acetobutylicum—a journey toward simultaneous use of xylose and glucose. Appl Microbiol Biotechnol 99(18):7579–7588

    Article  CAS  PubMed  Google Scholar 

  • Cao GL, Ximenes E, Nichols NN, Zhang LY, Ladisch M (2013) Biological abatement of cellulase inhibitors. Bioresour Technol 146:604–610

    Article  CAS  PubMed  Google Scholar 

  • Carrott PJM, Carrott MMLR (2007) Lignin—from natural adsorbent to activated carbon: a review. Bioresour Technol 98(12):2301–2312

    Google Scholar 

  • Chang VS, Nagwani M, Holtzapple MT (1998) Lime pretreatment of crop residues bagasse and wheat straw. Appl Biochem Biotechnol 74(3):135–159

    Article  CAS  Google Scholar 

  • Chen Y (2011) Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review. J Ind Microbiol Biotechnol 38(5):581–597

    Article  CAS  PubMed  Google Scholar 

  • Chen HZ, Liu ZH (2015) Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 10(6):866–885

    Article  CAS  PubMed  Google Scholar 

  • Chiang CJ, Lee HM, Guo HJ, Wang ZW, Lin LJ, Chao YP (2013) Systematic approach to engineer Escherichia coli pathways for co-utilization of a glucose-xylose mixture. J Agric Food Chem 61(31):7583–7590

    Article  CAS  PubMed  Google Scholar 

  • Choi DG, Kreikebaum F, Thomas VM, Divan D (2013) Coordinated EV adoption: double-digit reductions in emissions and fuel use for $40/vehicle-year. Environ Sci Technol 47(18):10703–10707

    CAS  PubMed  Google Scholar 

  • Chong H, Yeow J, Wang I, Song H, Jiang R (2013) Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS ONE 8(10):e77422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chundawat SPS, Vismeh R, Sharma LN, Humpula JF, Sousa LD, Chambliss CK, Jones AD, Balan V, Dale BE (2010) Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresour Technol 101(21):8429–8438

    Article  CAS  PubMed  Google Scholar 

  • Chung D, Verbeke TJ, Cross KL, Westpheling J, Elkins JG (2015) Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification. Biotechnol Biofuels 8:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cirino PC, Chin JW, Ingram LO (2006) Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng 95(6):1167–1176

    Article  CAS  PubMed  Google Scholar 

  • Clark JH, Budarin V, Deswarte FEI, Hardy JJE, Kerton FM, Hunt AJ, Luque R, Macquarrie DJ, Milkowski K, Rodriguez A et al (2006) Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chem 8(10):853–860

    Article  CAS  Google Scholar 

  • Connors WJ, Johanson LN, Sarkanen KV, Winslow P (1980) Thermal-degradation of kraft lignin in tetralin. Holzforschung 34(1):29–37

    Article  CAS  Google Scholar 

  • Curreli N, Fadda MB, Rescigno A, Rinaldi AC, Soddu G, Sollai F, Vaccargiu S, Sanjust E, Rinaldi A (1997) Mild alkaline/oxidative pretreatment of wheat straw. Process Biochem 32(8):665–670

    Article  CAS  Google Scholar 

  • Curtis SJ, Epstein W (1975) Phosphorylation of d-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J Bacteriol 122(3):1189–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daruwalla KR, Paxton AT, Henderson PJ (1981) Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Biochem J 200(3):611–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis EO, Henderson PJ (1987) The cloning and DNA sequence of the gene xylE for xylose-proton symport in Escherichia coli K12. J Biol Chem 262(29):13928–13932

    CAS  PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutscher J (2008) The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11(2):87–93

    Article  CAS  PubMed  Google Scholar 

  • Dien BS, Nichols NN, Bothast RJ (2001) Recombinant Escherichia coli engineered for production of l-lactic acid from hexose and pentose sugars. J Ind Microbiol Biotechnol 27(4):259–264

    Article  CAS  PubMed  Google Scholar 

  • Dien BS, Nichols NN, Bothast RJ (2002) Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of l-lactic acid. J Ind Microbiol Biotechnol 29(5):221–227

    Article  CAS  PubMed  Google Scholar 

  • Doran-Peterson J, Jangid A, Brandon SK, DeCrescenzo-Henriksen E, Dien B, Ingram LO (2009) Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production. Methods Mol Biol 581:263–280

    Article  CAS  PubMed  Google Scholar 

  • Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487

    Google Scholar 

  • Eiteman MA, Lee SA, Altman E (2008) A co-fermentation strategy to consume sugar mixtures effectively. J Biol Eng 2:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eiteman MA, Lee SA, Altman R, Altman E (2009) A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Biotechnol Bioeng 102(3):822–827

    Article  CAS  PubMed  Google Scholar 

  • Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4(6):457–469

    Article  CAS  PubMed  Google Scholar 

  • Escalante A, Salinas Cervantes A, Gosset G, Bolivar F (2012) Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol 94(6):1483–1494

    Article  CAS  PubMed  Google Scholar 

  • Eudes A, Liang Y, Mitra P, Loque D (2014) Lignin bioengineering. Curr Opin Biotechnol 26:189–198

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Sandoval MT, Huerta-Beristain G, Trujillo-Martinez B, Bustos P, Gonzalez V, Bolivar F, Gosset G, Martinez A (2012) Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium. Appl Microbiol Biotechnol 96(5):1291–1300

    Article  CAS  PubMed  Google Scholar 

  • Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14(5):620–623

    Article  CAS  PubMed  Google Scholar 

  • Foo JL, Leong SSJ (2013) Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules. Biotechnol Biofuels 6:1

    Google Scholar 

  • Forsberg KJ, Patel S, Witt E, Wang B, Ellison TD, Dantas G (2016) Identification of genes conferring tolerance to lignocellulose-derived inhibitors by functional selections in soil metagenomes. Appl Environ Microbiol 82(2):528–537

    Article  CAS  PubMed Central  Google Scholar 

  • Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U (2013) Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Biotechnol 31(10):581–593

    Article  CAS  PubMed  Google Scholar 

  • Geddes CC, Peterson JJ, Roslander C, Zacchi G, Mullinnix MT, Shanmugam KT, Ingram LO (2010a) Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresour Technol 101(6):1851–1857

    Article  CAS  PubMed  Google Scholar 

  • Geddes CC, Peterson JJ, Mullinnix MT, Svoronos SA, Shanmugam KT, Ingram LO (2010b) Optimizing cellulase usage for improved mixing and rheological properties of acid-pretreated sugarcane bagasse. Bioresour Technol 101(23):9128–9136

    Article  CAS  PubMed  Google Scholar 

  • Geddes CC, Nieves IU, Ingram LO (2011a) Advances in ethanol production. Curr Opin Biotechnol 22(3):312–319

    Article  CAS  PubMed  Google Scholar 

  • Geddes CC, Mullinnix MT, Nieves IU, Peterson JJ, Hoffman RW, York SW, Yomano LP, Miller EN, Shanmugam KT, Ingram LO (2011b) Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour Technol 102(3):2702–2711

    Article  CAS  PubMed  Google Scholar 

  • Geddes CC, Mullinnix MT, Nieves IU, Hoffman RW, Sagues WJ, York SW, Shanmugam KT, Erickson JE, Vermerris WE, Ingram LO (2013) Seed train development for the fermentation of bagasse from sweet sorghum and sugarcane using a simplified fermentation process. Bioresour Technol 128:716–724

    Article  CAS  PubMed  Google Scholar 

  • Geddes RD, Wang X, Yomano LP, Miller EN, Zheng H, Shanmugam KT, Ingram LO (2014) Polyamine transporters and polyamines increase furfural tolerance during xylose fermentation with ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol 80:5955–5964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geddes R, Shanmugam KT, Ingram LO (2015) Combining treatments to improve the fermentation of sugarcane bagasse hydrolysates by ethanologenic Escherichia coli LY180. Bioresour Technol 189:15–22

    Article  CAS  PubMed  Google Scholar 

  • Geng HF, Jiang RR (2015) cAMP receptor protein (CRP)-mediated resistance/tolerance in bacteria: mechanism and utilization in biotechnology. Appl Microbiol Biot 99(11):4533–4543

    Article  CAS  Google Scholar 

  • Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800

    Article  CAS  PubMed  Google Scholar 

  • Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nat Genet 3(3):266–272

    Article  CAS  PubMed  Google Scholar 

  • Glebes TY, Sandoval NR, Reeder PJ, Schilling KD, Zhang M, Gill RT (2014) Genome-wide mapping of furfural tolerance genes in Escherichia coli. Plos One 9(1):e87540

    Google Scholar 

  • Glebes TY, Sandoval NR, Gillis JH, Gill RT (2015) Comparison of genome-wide selection strategies to identify furfural tolerance genes in Escherichia coli. Biotechnol Bioeng 112(1):129–140

    Article  CAS  PubMed  Google Scholar 

  • Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6(8):613–624

    Article  PubMed  CAS  Google Scholar 

  • Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71(3):339–349

    Article  CAS  PubMed  Google Scholar 

  • Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Fact 4(1):14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gould JM (1985) Alkaline hydrogen-peroxide pretreatment to enhance utilization of lignocellulose. Abs Pap Am Chem Soc 190(Sep):76-Mbd

    Google Scholar 

  • Grzenia DL, Schell DJ, Wickramasinghe SR (2012) Membrane extraction for detoxification of biomass hydrolysates. Bioresour Technol 111:248–254

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:W557–W559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT (2004) Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol 186(22):7593–7600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zhang J, Bao J (2016) Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequent ethanol fermentation evaluation. Biotechnol Biofuels 9:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henderson PJ (1990) Proton-linked sugar transport systems in bacteria. J Bioenerg Biomembr 22(4):525–569

    Article  CAS  PubMed  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Montalvo V, Valle F, Bolivar F, Gosset G (2001) Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system. Appl Microbiol Biotechnol 57(1–2):186–191

    CAS  PubMed  Google Scholar 

  • Hernandez-Montalvo V, Martinez A, Hernandez-Chavez G, Bolivar F, Valle F, Gosset G (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 83(6):687–694

    Article  CAS  PubMed  Google Scholar 

  • Holtzapple MT, Jun JH, Ashok G, Patibandla SL, Dale BE (1991) The ammonia freeze explosion (Afex) process—a practical lignocellulose pretreatment. Appl Biochem Biotechnol 28–9:59–74

    Article  Google Scholar 

  • Horazdovsky BF, Hogg RW (1987) High-affinity l-arabinose transport operon. Gene product expression and mRNAs. J Mol Biol 197(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Jarboe LR (2011) YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl Microbiol Biotechnol 89(2):249–257

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW (1983) Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng Biotechnol 27:1–32

    CAS  PubMed  Google Scholar 

  • Jeffries TW, Shi NQ (1999) Genetic engineering for improved xylose fermentation by yeasts. Adv Biochem Eng Biotechnol 65:117–161

    CAS  PubMed  Google Scholar 

  • Ji XJ, Nie ZK, Huang H, Ren LJ, Peng C, Ouyang PK (2011) Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures. Appl Microbiol Biotechnol 89(4):1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Jojima T, Omumasaba CA, Inui M, Yukawa H (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85(3):471–480

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen CI, Kallipolitis BH, Valentin-Hansen P (1998) DNA-binding characteristics of the Escherichia coli CytR regulator: a relaxed spacing requirement between operator half-sites is provided by a flexible, unstructured interdomain linker. Mol Microbiol 27(1):41–50

    Article  CAS  PubMed  Google Scholar 

  • Karl TR, Trenberth KE (2003) Modern global climate change. Science 302(5651):1719–1723

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72(5):3418–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan QA, Hadi SM (1993) Effect of furfural on plasmid DNA. Biochem Mol Biol Int 29(6):1153–1160

    CAS  PubMed  Google Scholar 

  • Khan QA, Shamsi FA, Hadi SM (1995) Mutagenicity of furfural in plasmid DNA. Cancer Lett 89(1):95–99

    Article  CAS  PubMed  Google Scholar 

  • Khankal R, Chin JW, Ghosh D, Cirino PC (2009) Transcriptional effects of CRP* expression in Escherichia coli. J Biol Eng 3:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim J, Adhya S, Garges S (1992) Allosteric changes in the cAMP receptor protein of Escherichia coli: hinge reorientation. Proc Natl Acad Sci U S A 89(20):9700–9704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Block DE, Mills DA (2010) Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biot 88(5):1077–1085

    Article  CAS  Google Scholar 

  • Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS (2012) Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol 30(5):274–282

    Article  PubMed  CAS  Google Scholar 

  • Ko JK, Um Y, Park YC, Seo JH, Kim KH (2015) Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Appl Microbiol Biot 99(10):4201–4212

    Article  CAS  Google Scholar 

  • Koirala S, Wang XY, Rao CV (2016) Reciprocal regulation of l-Arabinose and d-Xylose metabolism in Escherichia coli. J Bacteriol 198(3):386–393

    Article  CAS  PubMed Central  Google Scholar 

  • Kolb A, Busby S, Buc H, Garges S, Adhya S (1993) Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62:749–795

    Article  CAS  PubMed  Google Scholar 

  • Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ (2010a) Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci U S A 107(11):4919–4924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ (2010b) Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid. Bioresour Technol 101(16):6291–6296

    Article  CAS  PubMed  Google Scholar 

  • Kotrba P, Inui M, Yukawa H (2001) Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng 92(6):502–517

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanaswamy A, Rajaraman E, Eiteman MA, Altman E (2011) Microbial removal of acetate selectively from sugar mixtures. J Ind Microbiol Biotechnol 38(9):1477–1484

    Article  CAS  PubMed  Google Scholar 

  • Larsson S, Reimann A, Nilvebrant NO, Jonsson LJ (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77–9:91–103

    Article  Google Scholar 

  • Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A (LNH-ST). Proc Natl Acad Sci U S A 106(5):1368–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau MW, Dale BE, Balan V (2008) Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnol Bioeng 99(3):529–539

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Liu ZLBH (2010) Biomass conversion inhibitors and in situ detoxification. In: Vertès AOA, Blaschek H, Yukawa H (eds) Biomass to biofuels: strategies for global industries. Wiley, West Sussex, United Kingdom, pp 233–259

    Chapter  Google Scholar 

  • Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31(8):345–352

    Article  CAS  PubMed  Google Scholar 

  • Liu MZ, Durfee T, Cabrera JE, Zhao K, Jin DJ, Blattner FR (2005) Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. J Biol Chem 280(16):15921–15927

    Article  CAS  PubMed  Google Scholar 

  • Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96(18):1967–1977

    Article  CAS  PubMed  Google Scholar 

  • Loow YL, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23(3):1491–1520

    Article  CAS  Google Scholar 

  • Lorca GL, Chung YJ, Barabote RD, Weyler W, Schilling CH, Saier MH (2005) Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK. J Bacteriol 187(22):7826–7839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    Article  CAS  PubMed  Google Scholar 

  • Maiden MC, Jones-Mortimer MC, Henderson PJ (1988) The cloning, DNA sequence, and overexpression of the gene araE coding for arabinose-proton symport in Escherichia coli K12. J Biol Chem 263(17):8003–8010

    CAS  PubMed  Google Scholar 

  • Malan TP, Kolb A, Buc H, McClure WR (1984) Mechanism of CRP-cAMP activation of lac operon transcription initiation activation of the P1 promoter. J Mol Biol 180(4):881–909

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)(2) treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 69(5):526–536

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Mathew AK, Parameshwaran B, Sukumaran RK, Pandey A (2016) An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. Bioresour Technol 199:13–20

    Article  CAS  PubMed  Google Scholar 

  • McDonald TP, Walmsley AR, Henderson PJ (1997) Asparagine 394 in putative helix 11 of the galactose-H + symport protein (GalP) from Escherichia coli is associated with the internal binding site for cytochalasin B and sugar. J Biol Chem 272(24):15189–15199

    Article  CAS  PubMed  Google Scholar 

  • Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO (2009a) Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75(13):4315–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller EN, Jarboe LR, Turner PC, Pharkya P, Yomano LP, York SW, Nunn D, Shanmugam KT, Ingram LO (2009b) Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol 75(19):6132–6141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller EN, Turner PC, Jarboe LR, Ingram LO (2010) Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol-producing Escherichia coli LY180. Biotechnol Lett 32(5):661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci U S A 110(36):14592–14597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misset O, Blaauw M, Postma PW, Robillard GT (1983) Bacterial phosphoenolpyruvate-dependent phosphotransferase system. Mechanism of the transmembrane sugar translocation and phosphorylation. Biochemistry 22(26):6163–6170

    Article  CAS  PubMed  Google Scholar 

  • Mohagheghi A, Linger JG, Yang S, Smith H, Dowe N, Zhang M, Pienkos PT (2015) Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate. Biotechnol Biofuels 8:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mok WSL, Antal MJ (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31(4):1157–1161

    Article  CAS  Google Scholar 

  • Moreno MS, Schneider BL, Maile RR, Weyler W, Saier MH Jr (2001) Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 39(5):1366–1381

    Article  CAS  PubMed  Google Scholar 

  • Morikawa Y, Zhao XB, Liu DH (2014) Biological co-production of ethanol and biodiesel from wheat straw: a case of dilute acid pretreatment. Rsc Adv 4(71):37878–37888

    Article  CAS  Google Scholar 

  • Mukhopadhyay A (2015) Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol 23(8):498–508

    Article  CAS  PubMed  Google Scholar 

  • Neely WC (1984) Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnol Bioeng 26(1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Nelson SO, Wright JK, Postma PW (1983) The mechanism of inducer exclusion. Direct interaction between purified III of the phosphoenolpyruvate: sugar phosphotransferase system and the lactose carrier of Escherichia coli. EMBO J 2(5):715–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols NN, Dien BS, Bothast RJ (2001) Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol 56(1–2):120–125

    Article  CAS  PubMed  Google Scholar 

  • Nichols NN, Dien BS, Cotta MA (2010) Fermentation of bioenergy crops into ethanol using biological abatement for removal of inhibitors. Bioresour Technol 101(19):7545–7550

    Article  CAS  PubMed  Google Scholar 

  • Nieves LM, Panyon LA, Wang X (2015) Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front Bioeng Biotechnol 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23(3):396–405

    Article  CAS  PubMed  Google Scholar 

  • Osumi T, Saier MH Jr (1982) Regulation of lactose permease activity by the phosphoenolpyruvate: sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to the lactose permease. Proc Natl Acad Sci U S A 79(5):1457–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan XJ, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao ZZ, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481

    Article  CAS  PubMed  Google Scholar 

  • Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57(3):543–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajan K, Carrier DJ (2014) Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass Bioenergy 62:222–227

    Article  CAS  Google Scholar 

  • Ran H, Zhang J, Gao QQ, Lin ZL, Bao J (2014) Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1. Biotechnology for Biofuels 7:1

    Google Scholar 

  • Ren C, Gu Y, Hu S, Wu Y, Wang P, Yang Y, Yang C, Yang S, Jiang W (2010) Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metab Eng 12(5):446–454

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  CAS  PubMed  Google Scholar 

  • Sandoval NR, Mills TY, Zhang M, Gill RT (2011) Elucidating acetate tolerance in E. coli using a genome-wide approach. Metab Eng 13(2):214–224

    Article  CAS  PubMed  Google Scholar 

  • Sandoval NR, Kim JYH, Glebes TY, Reeder PJ, Aucoin HR, Warner JR, Gill RT (2012) Strategy for directing combinatorial genome engineering in Escherichia coli. Proc Natl Acad Sci USA 109(26):10540–10545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169

    CAS  PubMed  Google Scholar 

  • Schleif R (2000) Regulation of the l-arabinose operon of Escherichia coli. Trends Genet 16(12):559–565

    Article  CAS  PubMed  Google Scholar 

  • Seo HM, Jeon JM, Lee JH, Song HS, Joo HB, Park SH, Choi KY, Kim YH, Park K, Ahn J et al (2016) Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural. J Ind Microbiol Biotechnol 43(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Service RF (2007) Cellulosic ethanol—biofuel researchers prepare to reap a new harvest. Science 315(5818):1488

    Google Scholar 

  • Shi AQ, Zheng HB, Yomano LP, York SW, Shanmugam KT, Ingram LO (2016) Plasmidic expression of nemA and yafC* increased resistance of ethanologenic Escherichia coli LY180 to nonvolatile side products from dilute acid treatment of sugarcane bagasse and artificial hydrolysate. Appl Environ Microbiol 82(7):2137–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shui ZX, Qin H, Wu B, Ruan ZY, Wang LS, Tan FR, Wang JL, Tang XY, Dai LC, Hu GQ et al (2015) Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Appl Microbiol Biotechnol 99(13):5739–5748

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Mishra P (1995) Microbial pentose UtilizatJon. Elsevier, Amsterdam

    Google Scholar 

  • Sousa LD, Chundawat SPS, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20(3):339–347

    Article  CAS  Google Scholar 

  • Stock JB, Waygood EB, Meadow ND, Postma PW, Roseman S (1982) Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. J Biol Chem 257(23):14543–14552

    CAS  PubMed  Google Scholar 

  • Stulke J, Hillen W (1999) Carbon catabolite repression in bacteria. Curr Opin Microbiol 2(2):195–201

    Article  CAS  PubMed  Google Scholar 

  • Sumiya M, Davis EO, Packman LC, McDonald TP, Henderson PJ (1995) Molecular genetics of a receptor protein for d-xylose, encoded by the gene xylF, in Escherichia coli. Recept Channels 3(2):117–128

    CAS  PubMed  Google Scholar 

  • Sun YC, Wen JL, Xu F, Sun RC (2011) Organosolv- and alkali-soluble hemicelluloses degraded from Tamarix austromongolica: characterization of physicochemical, structural features and thermal stability. Polym Degrad Stab 96(8):1478–1488

    Article  CAS  Google Scholar 

  • Swatloski RP, Visser AE, Reichert WM, Broker GA, Farina LM, Holbrey JD, Rogers RD (2002a) On the solubilization of water with ethanol in hydrophobic hexafluorophosphate ionic liquids. Green Chem 4(2):81–87

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002b) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975

    Article  CAS  PubMed  Google Scholar 

  • Tagami H, Aiba H (1998) A common role of CRP in transcription activation: CRP acts transiently to stimulate events leading to open complex formation at a diverse set of promoters. EMBO J 17(6):1759–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi CM, Takahashi DF, Carvalhal ML, Alterthum F (1999) Effects of acetate on the growth and fermentation performance of Escherichia coli KO11. Appl Biochem Biotechnol 81(3):193–203

    Article  CAS  PubMed  Google Scholar 

  • Tan FR, Dai LC, Wu B, Qin H, Shui ZX, Wang JL, Zhu QL, Hu QC, Ruan ZY, He MX (2015) Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein. Appl Microbiol Biot 99(12):5363–5371

    Article  CAS  Google Scholar 

  • Tchieu JH, Norris V, Edwards JS, Saier MH Jr (2001) The complete phosphotransferase system in Escherichia coli. J Mol Microbiol Biotechnol 3(3):329–346

    CAS  PubMed  Google Scholar 

  • Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2004) Ammonia fiber explosion treatment of corn stover. Appl Biochem Biotechnol 113:951–963

    Article  PubMed  Google Scholar 

  • Toivari MH, Salusjarvi L, Ruohonen L, Penttila M (2004) Endogenous xylose pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 70(6):3681–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torget R, Himmel M, Wright JD, Grohmann K (1988) Initial design of a dilute sulfuric-acid pretreatment process for aspen wood chips. Appl Biochem Biotechnol 17:89–104

    Article  CAS  Google Scholar 

  • Torget R, Werdene P, Himmel M, Grohmann K (1990) Dilute acid pretreatment of short rotation woody and herbaceous crops. Appl Biochem Biotechnol 24–5:115–126

    Article  Google Scholar 

  • Travaini R, Otero MDM, Coca M, Da-Silva R, Bolado S (2013) Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresour Technol 133:332–339

    Article  CAS  PubMed  Google Scholar 

  • Travaini R, Martin-Juarez J, Lorenzo-Hernando A, Bolado-Rodriguez S (2016) Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited. Bioresour Technol 199:2–12

    Article  CAS  PubMed  Google Scholar 

  • Trinh LTP, Lee YJ, Lee JW, Lee HJ (2015) Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenerg 81:1–8

    Article  CAS  Google Scholar 

  • Trudgill PW (1969) Metabolism of 2-furoic acid by Pseudomonas F2. Biochem J 113(4):577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuge Y, Kudou M, Kawaguchi H, Ishii J, Hasunuma T, Kondo A (2016) FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum. Appl Microbiol Biot 100(6):2685–2692

    Article  CAS  Google Scholar 

  • Turner WJ, Dunlop MJ (2015) Trade-offs in improving biofuel tolerance using combinations of efflux pumps. Acs Synth Biol 4(10):1056–1063

    Article  CAS  PubMed  Google Scholar 

  • Turner MB, Spear SK, Huddleston JG, Holbrey JD, Rogers RD (2003) Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chem 5(4):443–447

    Article  CAS  Google Scholar 

  • Turner PC, Miller EN, Jarboe LR, Baggett CL, Shanmugam KT, Ingram LO (2010) YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance. J Ind Microbiol Biotechnol. doi:10.1007/s10295-10010-10787-10295

  • Ujor V, Agu CV, Gopalan V, Ezeji TC (2014) Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation. Appl Microbiol Biotechnol 98(14):6511–6521

    Article  CAS  PubMed  Google Scholar 

  • Ujor V, Agu CV, Gopalan V, Ezeji TC (2015) Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation. Appl Microbiol Biotechnol 99(8):3729–3740

    Article  CAS  PubMed  Google Scholar 

  • Valentinhansen P, Larsen JEL, Hojrup P, Short SA, Barbier CS (1986) Nucleotide-sequence of the Cytr regulatory gene of Escherichia coli K-12. Nucleic Acids Res 14(5):2215–2228

    Article  CAS  Google Scholar 

  • van der Pol EC, Bakker RR, Baets P, Eggink G (2014) By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels. Appl Microbiol Biotechnol 98(23):9579–9593

    Article  PubMed  CAS  Google Scholar 

  • Vancov T, Alston AS, Brown T, McIntosh S (2012) Use of ionic liquids in converting lignocellulosic material to biofuels. Renew Energy 45:1–6

    Article  CAS  Google Scholar 

  • Wang X, Miller EN, Yomano LP, Zhang X, Shanmugam KT, Ingram LO (2011) Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Appl Environ Microbiol 77(15):5132–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Miller EN, Yomano LP, Shanmugam KT, Ingram LO (2012a) Increased furan tolerance in Escherichia coli due to a cryptic ucpA gene. Appl Environ Microbiol 78(7):2452–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JQ, Zhang Y, Chen YL, Lin M, Lin ZL (2012b) Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates. Biotechnol Bioeng 109(12):3133–3142

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, Shanmugam KT, Ingram LO (2013) Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci U S A 110(10):4021–4026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler J, Reyes LH, Kao KC (2013) Adaptive laboratory evolution for strain engineering. Methods Mol Biol 985:211–222

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Yang Y, Ren C, Yang C, Yang S, Gu Y, Jiang W (2015) Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum. Metab Eng 28:169–179

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Eiteman MA, Altman E (2012) Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains. Microb Cell Fact 11:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia T, Altman E, Eiteman MA (2015) Succinate production from xylose-glucose mixtures using a consortium of engineered Escherichia coli. Eng Life Sci 15(1):65–72

    Article  CAS  Google Scholar 

  • Yang S, Land ML, Klingeman DM, Pelletier DA, Lu TY, Martin SL, Guo HB, Smith JC, Brown SD (2010) Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 107(23):10395–10400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi X, Gu H, Gao Q, Liu ZL, Bao J (2015) Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnol Biofuels 8:153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida K, Kobayashi K, Miwa Y, Kang CM, Matsunaga M, Yamaguchi H, Tojo S, Yamamoto M, Nishi R, Ogasawara N et al (2001) Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res 29(3):683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Xing Y, Lei F, Liu Z, Liu Z, Jiang J (2014) Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined green liquor and ethanol organosolv. Bioresour Technol 167:46–52

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Xu M, Tang IC, Yang ST (2015) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Biotechnol Bioeng 112(10):2134–2141

    Article  CAS  PubMed  Google Scholar 

  • Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66(4):203–210

    Article  CAS  PubMed  Google Scholar 

  • Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65(1):24–33

    Article  CAS  PubMed  Google Scholar 

  • Zaldivar J, Martinez A, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68(5):524–530

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkestein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas Mobilis. Science 267(5195):240–243

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Pei ZJ, Wang DH (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33

    Article  CAS  PubMed  Google Scholar 

  • Zhao XB, Cheng KK, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biot 82(5):815–827

    Article  CAS  Google Scholar 

  • Zhao C, Ding WM, Chen F, Cheng C, Shao QJ (2014) Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility. Bioresour Technol 155:34–40

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Wang X, Yomano LP, Shanmugam KT, Ingram LO (2012) Increase in furfural tolerance in ethanologenic Escherichia coli LY180 by plasmid-based expression of thyA. Appl Environ Microbiol 78(12):4346–4352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Wang X, Yomano LP, Geddes RD, Shanmugam KT, Ingram LO (2013) Improving Escherichia coli FucO for furfural tolerance by saturation mutagenesis of individual amino acid positions. Appl Environ Microbiol 79(10):3202–3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by start-up fund from Arizona State University and the grant from U.S. National Science Foundation (CBET-1511637). Andrew Flores is supported by an IGERT-SUN fellowship funded by the National Science Foundation (Award 1144616).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Flores, A.D., Kurgan, G.L., Wang, X. (2017). Engineering Bacterial Sugar Catabolism and Tolerance Toward Lignocellulose Conversion. In: Gosset, G. (eds) Engineering of Microorganisms for the Production of Chemicals and Biofuels from Renewable Resources. Springer, Cham. https://doi.org/10.1007/978-3-319-51729-2_6

Download citation

Publish with us

Policies and ethics