Skip to main content

Abstract

Thermophilic bacteria have gained increased interest as bioprocessing platforms for bioethanol production from second generation biomass with a particular emphasis on thermophilic clostridia species. Although thermophilic bacteria possess many advantages such as broad substrate spectra, fast growth rates, and high tolerance for environmental factors, they usually tolerate less ethanol than yeasts and produce various by-products apart from ethanol. These two factors have been addressed for several thermophilic bacteria through genetic engineering, to increase ethanol tolerance or cut off branching fermentation pathways and direct end product formation towards ethanol only. The best wild type ethanol producers belong to clostridia, particularly Thermoanaerobacter, Thermoanaerobacterium, and Clostridium. Additionally, non-native ethanol producers exhibiting cellulolytic properties have been genetically modified to insert genes for ethanol production pathways, as of Caldicellulosiruptor bescii. The scope of this chapter is on recent genetic engineering of thermophilic ethanol-producing bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akinosho H, Yee K, Close D, Ragauskas A (2014) The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front Chem 2(August):66. doi:10.3389/fchem.2014.00066

  • Almarsdottir AR, Sigurbjornsdottir MA, Orlygsson J (2012) Effect of various factors on ethanol yields from lignocellulosic biomass by Thermoanaerobacterium AK 17. Biotechnol Bioeng 109(3):686–694. doi:10.1002/bit.24346

  • Altaras NE, Etzel MR, Cameron DC (2001) Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8. Biotechnol Prog 17:52–56

    Article  CAS  PubMed  Google Scholar 

  • Andersen RL, Jensen KM, Mikkelsen MJ (2015) Continuous ethanol fermentation of pretreated lignocellulosic biomasses, waste biomasses, molasses and syrup using the anaerobic, thermophilic bacterium Thermoanaerobacter italicus Pentocrobe 411. PloS One, 10(8):e0136060. doi:10.1371/journal.pone.0136060

  • Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, … Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77(23):8288–8294. doi:10.1128/AEM.00646-11

  • Avci A, Dönmez S (2006) Effect of zinc on ethanol production by two Thermoanaerobacter strains. Process Biochem 41(4):984–989. doi:10.1016/j.procbio.2005.11.007

  • Barak Y, Lamed R, Vazana Y, Moraïs S, Bayer EA (2012) Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Meth Enzymol 510:429–452. doi:10.1016/B978-0-12-415931-0.00023-9

  • Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31(8–9):871–888. doi:10.1080/09593331003710236

  • Ben-Bassat A, Lamed R, Zeikus JG (1981) Ethanol production by thermophilic bacteria: metabolic control of end product formation in ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii. J Bacteriol 146(1):192–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas R, Prabhu S, Lynd LR, Guss AM (2014) Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PloS One 9(2):e86389. doi:10.1371/journal.pone.0086389

  • Bradshaw M, Johnson EA (2010) Genetic manipulation of Clostridium. In: Baltz RH, Davies JE, Demain AL (eds) Manual of industrial microbiology and biotechnology, 3rd edn. ASM Press, Washington, DC, pp 238–261

    Google Scholar 

  • Brock TD (1986) Introduction: an overview of the thermophiles. In: Brock TD (ed) Thermophiles: general, molecular, and applied microbiology. Wiley, New York, pp 1–16

    Google Scholar 

  • Burgess EA, Wagner IC, Wiegel J (2007) Thermophile environments and biodiversity. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 13–29

    Chapter  Google Scholar 

  • Canganella F, Wiegel J (1993) The potential of thermophilic clostridia in biotechnology. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, Freepost, pp 394–429

    Google Scholar 

  • Cann IK, Stroot PG, Mackie KR, White BA, Mackie RI (2001) Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. Int J Syst Evol Microbiol 51(Pt 2):293–302. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11321073

  • Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R (2012) Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol 12(1):295. doi:10.1186/1471-2180-12-295

  • Carreira LH, Ljungdahl LG, Bryant F (1982) Control of end product formation with Thermoanaerobacter ethanolicus: enzymology and physiology. In: 4th international symposium on genetics of industrial microorganisms, pp 351–355

    Google Scholar 

  • Carreira LH, Wiegel J, Ljundahl LG (1983) Production of ethanol from biopolymers by anaerobic thermophilic, and extreme thermophilic bacteria: I. Regulation of carbohydrate utilization in mutants of Thermoanaerobacter ethanolicus. Biotechnol Bioeng 13:183–191

    CAS  Google Scholar 

  • Cha M, Chung D, Elkins JG, Guss AM, Westpheling J (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 6(1):85. doi:10.1186/1754-6834-6-85

  • Chou CJ, Jenney FE, Adams MWW, Kelly RM (2008) Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metab Eng 10(6):394–404. doi:10.1016/j.ymben.2008.06.007

  • Chung D, Cha M, Farkas J, Westpheling J (2013a) Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus. PLoS One 8(5):1–10. doi:10.1371/journal.pone.0062881

  • Chung D, Farkas J, Westpheling J (2013b) Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol Biofuels 6(1):82. doi:10.1186/1754-6834-6-82

  • Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci U S A 111(24):8931–8936. doi:10.1073/pnas.1402210111

  • Chung D, Cha M, Snyder EN, Elkins JG, Guss AM, Westpheling J (2015a) Cellulosic ethanol production via consolidated bioprocessing at 75 °C by engineered Caldicellulosiruptor bescii. Biotechnol Biofuels 8(1):163. doi:10.1186/s13068-015-0346-4

  • Chung D, Verbeke TJ, Cross KL, Westpheling J, Elkins JG (2015b) Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification. Biotechnol Biofuels 8:102. doi:10.1186/s13068-015-0287-y

  • Clarkson SM, Hamilton-Brehm SD, Giannone RJ, Engle NL, Tschaplinski TJ, Hettich RL, Elkins JG (2014) A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E. Biotechnol Biofuels 7(1):165. doi:10.1186/s13068-014-0165-z

  • Cord-Ruwisch R, Seitz H-J, Conrad R (1988) The capacity of hydrogentrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the electron acceptor. Arch Microbiol 149:350–357

    Article  CAS  Google Scholar 

  • Crespo CF, Badshah M, Alvarez MT, Mattiasson B (2012a) Ethanol production by continuous fermentation of D-(+)-cellobiose, D-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis. Bioresour Technol 103(1):186–91. doi:10.1016/j.biortech.2011.10.020

  • Crespo C, Pozzo T, Karlsson EN, Alvarez MT, Mattiasson B (2012b) Caloramator boliviensis sp. nov., a thermophilic, ethanol-producing bacterium isolated from a hot spring. Int J Syst Evol Microbiol 62(7):1679–1686. doi:10.1099/ijs.0.032664-0

  • Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, … Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11(6):398–408. doi:10.1016/j.ymben.2009.08.005

  • Davia IJ, Carter G, Young M, Minton NP (2005) Gene cloning in clostridia. In: Durre P (ed) Handbook on clostridia. Taylor & Francis, Boca Raton, pp 37–52

    Google Scholar 

  • De Vrije T, Mars AE, Budde MAW, Lai MH, Dijkema C, De Waard P, Claassen PAM (2007) Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 74(6):1358–1367. doi:10.1007/s00253-006-0783-x

  • Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69(1):124–154. doi:10.1128/MMBR.69.1.124

  • Desai SG, Guerinot ML, Lynd LR (2004) Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Microbiol Biotechnol 65(5):600–605. doi:10.1007/s00253-004-1575-9

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266. doi:10.1007/s00253-003-1444-y

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2(7):541–551. doi:10.1038/nrmicro925

  • Durre P (2009) Metabolic networks in Clostridium acetobutylicum: interaction of sporulation, solventogenesis and toxin formation. In: Bruggemann H, Gottschalk G (eds) Clostridia: molecular biology in the post-genomic era, 12th edn. Caister Academic Press, Norfolk, pp 215–227

    Google Scholar 

  • Ellis LD, Holwerda EK, Hogsett D, Rogers S, Shao X, Tschaplinski T, … Lynd LR (2012) Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Bioresour Technol 103(1):293–299. doi:10.1016/j.biortech.2011.09.128

  • Freier D, Mothershed CP, Wiegel J (1988) Characterization of Clostridium thermocellum JW20. Appl Environ Microbiol 54(1):204–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georgieva TI, Ahring BK (2007) Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl Microbiol Biotechnol 77(1):61–68. doi:10.1007/s00253-007-1149-8

  • Georgieva TI, Mikkelsen MJ, Ahring BK (2007) High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1. Cent Eur J Biol 2(3):364–377. doi:10.2478/s11535-007-0026-x

  • Georgieva TI, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145(1–3):99–110. doi:10.1007/s12010-007-8014-1

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556. doi:10.1016/j.tibtech.2006.10.004

  • Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrogen Energy 34(17):7379–7389. doi:10.1016/j.ijhydene.2008.12.080

  • He Q, Lokken PM, Chen S, Zhou J (2009) Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus. Bioresour Technol 100(23):5955–5965. doi:10.1016/j.biortech.2009.06.084

  • Herring CD, Kenealy WR, Shaw AJ, Covalla SF, Olson DG, Zhang J, … Hogsett DA (2016) Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood. Biotechnol Biofuels 9(1):125. doi:10.1186/s13068-016-0536-8

  • Ivanova G, Rákhely G, Kovács KL (2009) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrogen Energy 34(9):3659–3670. doi:10.1016/j.ijhydene.2009.02.082

  • Jessen JE, Orlygsson J (2012) Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a hot spring in Iceland. J Biomed Biotechnol 2012: 186982. doi:10.1155/2012/186982

  • Jones PR (2008) Improving fermentative biomass-derived H2-production by engineering microbial metabolism. Int J Hydrogen Energy 33(19):5122–5130. doi:10.1016/j.ijhydene.2008.05.004

  • Jouzani GS, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 5:152–195. doi:10.18331/BRJ2015.2.1.4

  • Kádár Z, de Vrije T, van Noorden GE, Budde MAW, Szengyel Z, Réczey K, Claassen PAM (2004) Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol 113–116:497–508. doi:10.1385/ABAB:114:1-3:497

  • Kengen SWM, Gorrissen HP, Verhaart M (2009) Biological hydrogen production by anaerobic microorganisms. In: Soataert W, Vandamme EJ (eds) Biofuels. Wiley, Chichester, pp 197–221

    Chapter  Google Scholar 

  • Koskinen PEP, Beck SR, Orlygsson J, Puhakka JA (2008) Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas. Biotechnol Bioeng 101(4):679–90. doi:10.1002/bit.21942

  • Kumagai A, Kawamura S, Lee SH, Endo T, Rodriguez M, Mielenz JR (2014) Simultaneous saccharification and fermentation and a consolidated bioprocessing for Hinoki cypress and Eucalyptus after fibrillation by steam and subsequent wet-disk milling. Bioresour Technol 162:89–95. doi:10.1016/j.biortech.2014.03.110

  • Lacis LS, Lawford HG (1988a) Effect of growth rate on ethanol production by Thermoanaerobacter ethanolicus in glucose- or xylose-limited continuous culture. Biotechnol Lett 10(8):603–608

    Article  CAS  Google Scholar 

  • Lacis LS, Lawford HG (1988b) Ethanol-producation from xylose by Thermoanaerobacter ethanolicus in batch and continuous culture. Arch Microbiol 150:48–55

    Article  CAS  Google Scholar 

  • Lacis LS, Lawford HG (1989) Analysis of the variation in ethanol yield from glucose or xylose with continuously grown Thermoanaerobacter ethanolicus. Appl Biochem Biotechnol 20(21):479–490

    Article  Google Scholar 

  • Lacis LS, Lawford HG, Lacist LS (1991) Product yield from elevated levels of xylose or glucose in continuous cultures Thermoanaerobacter ethanolicus growth and product yield from elevated levels of xylose or glucose in continuous cultures. Appl Environ Microbiol 57(2):579–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lagaert S, Pollet A, Courtin CM, Volckaert G (2014) β-xylosidases and α-L-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnol Adv 32(2):316–332. doi:10.1016/j.biotechadv.2013.11.005

  • Larsen L, Nielsen P, Ahring B (1997) Thermoanaerobacter mathranii sp nov, an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Microbiology 168(2): 114–119

    Google Scholar 

  • Lamed R, Zeikus JG (1980a) Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol 144(2):569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamed R, Zeikus JG (1980b) Glucose fermentation pathway of Thermoanaerobium brockii. J Bacteriol 141(3):1251–1257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamed RJ, Lobos JH, Su TM (1988) Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl Environ Microbiol 54(5):1216–1221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y-E, Mahendra JK, Canyong L, Zeikus JG (1993) Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium. Int J Syst Evol Microbiol 43(1):41–51

    Google Scholar 

  • Leschine S (2005) Degradation of polymer: cellulose, xylan, pectin, starch. In: Durre P (ed) Handbook on clostridia. CRC Press, Boca Raton, pp 101–131

    Chapter  Google Scholar 

  • Lovitt RW, Longin R, Zeikus JG (1984) Ethanol production by thermophilic bacteria: physiological comparison of solvent effects on parent and alcohol-tolerant strains. Appl Environ Microbiol 48:171–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovitt RW, Shen GJ, Zeikus JG (1988). Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 170(6):2809–2815. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=211207&tool=pmcentrez&rendertype=abstract

  • Lynd LR, Grethlein HE, Wolkin RH (1989) Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl Environ Microbiol 55(12):3131–3139. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=203235&tool=pmcentrez&rendertype=abstract

  • Lynd LR, Weimer PJ, Van Zyl WH, Isak S, Pretorius IS (2002) Microbial cellulose utilization : fundamentals and biotechnology microbial cellulose utilization : fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. doi:10.1128/MMBR.66.3.506

  • Mai V, Wiegel J (2000) Advances in development of a genetic system for Thermoanaerobacterium spp.: expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into the chromosome. Appl Environ Microbiol 66(11):4817–4821. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=92385&tool=pmcentrez&rendertype=abstract

  • Mielenz JR, Hogsett DA (2010) Improving microbial robustness using systems biology. In: Baltz RH, Davies JE, Demain AL (eds) Manual of industrial microbiology and biotechnology, 3rd edn. ASM Press, Washington, DC, pp 605–620

    Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686. doi:10.1016/j.biortech.2004.06.025

  • Olson DG, Sparling R, Lynd LR (2015) Ethanol production by engineered thermophiles. Curr Opin Biotechnol 33:130–141. doi:10.1016/j.copbio.2015.02.006

  • Orlygsson J (2012) Ethanol production from biomass by a moderate. Icel Agric Sci 25:25–35

    Google Scholar 

  • Parte AC (2014) LPSN—list of prokaryotic names with standing in nomenclature. Nucl Acids Res 42(Database issue):D613–D616. doi:10.1093/nar/gkt1111

  • Pawar SS (2014) Caldicellulosiruptor saccharolyticus: an ideal hydrogen producer? University of Lund

    Google Scholar 

  • Plugge CM, Stams AJM (2005) Syntrophism among Clostridiales. In: Durre P (ed) Handbook on clostridia. Taylor & Francis, Boca Raton, pp 769–784

    Google Scholar 

  • Rachek LI, Tucker AM, Winkler HH, Wood DO (1997) Transformation of Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiol Lett 148(2):163–167

    Article  Google Scholar 

  • Rainey FA, Donnison DM, Janssen PH, Saul D, Rodrigo A, Bergquist PL, Morgan HW (1994) Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiol Lett 120:263–266

    Article  CAS  PubMed  Google Scholar 

  • Ren N, Cao G, Wang A, Lee DJ, Guo W, Zhu Y (2008) Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy 33(21):6124–6132. doi:10.1016/j.ijhydene.2008.07.107

  • Ren N, Wang A, Cao G, Xu J, Gao L (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27(6):1051–1060. doi:10.1016/j.biotechadv.2009.05.007

  • Romano I, Dipasquale L, Orlando P, Lama L, d’Ippolito G, Pascual J, Gambacorta A (2010) Thermoanaerobacterium thermostercus sp. nov., a new anaerobic thermophilic hydrogen-producing bacterium from buffalo-dung. Extremophiles 14(2):233–240. doi:10.1007/s00792-010-0303-x

  • Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295. doi:10.1016/j.biortech.2007.11.013

  • Scully S, Orlygsson J (2014) Recent advances in second generation ethanol production by thermophilic bacteria. Energies 8(1):1–30. doi:10.3390/en8010001

  • Shao X, Raman B, Zhu M, Mielenz JR, Brown SD, Guss AM, Lynd LR (2011) Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl Microbiol Biotechnol 92(3):641–652. doi:10.1007/s00253-011-3492-z

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, … Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A 105(37):13769–13774. doi:10.1073/pnas.0801266105

  • Shaw AJ, Hogsett DA, Lynd LR (2009). Identification of the [FeFe]-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout. J Bacteriol 191(20):6457–6464. doi:10.1128/JB.00497-09

  • Shaw AJ, Hogsett DA, Lynd LR (2010) Natural competence in Thermoanaerobacter and Thermoanaerobacterium species. Appl Environ Microbiol 76(14):4713–4719. doi:10.1128/AEM.00402-10

  • Shaw AJ, Covalla SF, Hogsett DA, Herring CD (2011) Marker removal system for Thermoanaerobacterium saccharolyticum and development of a markerless ethanologen. Appl Environ Microbiol 77(7):2534–2536. doi:10.1128/AEM.01731-10

  • Shaw AJ, Covalla SF, Miller BB, Firliet BT, Hogsett DA, Herring CD (2012) Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metab Eng 14(5):528–532. doi:10.1016/j.ymben.2012.06.004

  • Sittijunda S, Tomás AF, Reungsang A, O-thong S, Angelidaki I (2013) Ethanol production from glucose and xylose by immobilized Thermoanaerobacter pentosaceus at 70 °C in an up-flow anaerobic sludge blanket (UASB) reactor. Bioresour Technol 143:598–607. doi:10.1016/j.biortech.2013.06.056

  • Sizova MV, Izquierdo JA, Panikov NS, Lynd LR (2011) Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost. Appl Environ Microbiol 77(7):2282–2291. doi:10.1128/AEM.01219-10

  • Stern J, Kahn A, Vazana Y, Shamshoum M, Moraïs S, Lamed R, Bayer EA (2015) Significance of relative position of cellulases in designer cellulosomes for optimized cellulolysis. PloS One 10(5):e0127326. doi:10.1371/journal.pone.0127326

  • Stern J, Moraïs S, Lamed R, Bayer EA (2016) Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature. mBio 7(2):e00083-16. doi:10.1128/mBio.00083-16

  • Sudha Rani K, Swamy MV, Seenayya G (1998) Production of ethanol from various pure and natural cellulosic biomass by Clostridium thermocellum strains SS21 and SS22. Proc Biochem 33(4):435–440. doi:10.1016/S0032-9592(97)00095-2

  • Sundaram TK (1986) Physiology and growth of thermophilic bacteria. In: Brock TD (ed) Thermophiles: general, molecular, and applied microbiology. Wiley, New York, pp 75–106

    Google Scholar 

  • Sveinsdottir M, Beck SR, Orlygsson J (2009) Ethanol production from monosugars and lignocellulosic biomass by thermophilic bacteria isolated from Icelandic hot springs. Icel Agric Sci 22:45–58

    Google Scholar 

  • Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, … Caiazza NC (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76(19):6591–6599. doi:10.1128/AEM.01484-10

  • Tyurin MV, Lynd LR, Wiegel J (2006) 13 gene transfer systems for obligately anaerobic thermophilic bacteria. Meth Microbiol 35:309–330

    Article  CAS  Google Scholar 

  • van der Veen D, Lo J, Brown SD, Johnson CM, Tschaplinski TJ, Martin M, … Lynd LR (2013) Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways. J Ind Microbiol Biotechnol 40(7):725–734. doi:10.1007/s10295-013-1275-5

  • Van Zyl LJ, Taylor MP, Eley K, Tuffin M, Cowan DA (2014) Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius. Appl Microbiol Biotechnol 98(3):1247–1259. doi:10.1007/s00253-013-5380-1

  • Vazana Y, Barak Y, Unger T, Peleg Y, Shamshoum M, Ben-Yehezkel T, … Bayer EA (2013) A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. Biotechnol Biofuels 6(1):182. doi:10.1186/1754-6834-6-182

  • Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann N Y Acad Sci 1125:1–43. doi:10.1196/annals.1419.029

  • Wiegel J, Ljungdahl LG (1981) Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 128:343–348

    Article  CAS  Google Scholar 

  • Yang SJ, Kataeva I, Wiegel J, Yin Y, Dam P, Xu Y, … Adams MWW (2010) Classification of “Anaerocellum thermophilum” strain DSM 6725 as Caldicellulosiruptor bescii sp. nov. Int J Syst Evol Microbiol 60(9):2011–2015. doi:10.1099/ijs.0.017731-0

  • Yao S, Mikkelsen MJ (2010a) Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii. J Mol Microbiol Biotechnol 19(3):123–133. doi:10.1159/000321498

  • Yao S, Mikkelsen MJ (2010b) Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 88(1):199–208. doi:10.1007/s00253-010-2703-3

  • Zeidan AA, van Niel EWJ (2010) A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. Int J Hydrogen Energy 35(3):1128–1137. doi:10.1016/j.ijhydene.2009.11.082

  • Zhang Y-HP, Lynd LR (2005) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci 102(26):7321–7325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Olson DG, Argyros DA, Deng Y, van Gulik WM, van Dijken JP, Lynd LR (2013) Atypical glycolysis in Clostridium thermocellum. Appl Environ Microbiol 79(9):3000–3008. doi:10.1128/AEM.04037-12

  • Zurawski JV, Conway JM, Lee LL, Simpson HJ, Izquierdo JA, Blumer-Schuette S, … Kelly RM (2015) Comparative analysis of extremely thermophilic Caldicellulosiruptor species reveals common and unique cellular strategies for plant biomass utilization. Appl Environ Microbiol 81(20):7159–7170. doi:10.1128/AEM.01622-15

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Orlygsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Scully, S.M., Orlygsson, J. (2017). Recent Advances in Genetic Engineering of Thermophilic Ethanol Producing Bacteria. In: Gosset, G. (eds) Engineering of Microorganisms for the Production of Chemicals and Biofuels from Renewable Resources. Springer, Cham. https://doi.org/10.1007/978-3-319-51729-2_1

Download citation

Publish with us

Policies and ethics