Skip to main content

A Novel Flux-Controlled Memristive Emulator for Analog Applications

  • Chapter
  • First Online:
Advances in Memristors, Memristive Devices and Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 701))

Abstract

Emerging memristor technology is drawing widespread attention during the recent time due to its potential diverse applications in nanoelectronic memories, logic and neuromorphic computer architectures. Due to the absence of a practical memristive device, most of the research works in this area are still based on memristor emulator circuits that can be of current-controlled or voltage-controlled type. In this chapter, we introduce two emulator circuits for flux-controlled memductor and memristor. These emulator circuits have been built based on second generation current conveyer (CCII+), one multiplier and a square circuit to mimic the hysteresis behavior of the memristor. The proposed memristor emulator circuits can not only emulate memristive and plasticity function but also can be configured for floating configurations characteristic. Furthermore, we present the mathematical modeling, SPICE simulation and experimental results of the proposed emulator circuits. The series and parallel connectivity of these emulator circuits have been also studied, In addition to frequency analysis of their behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla, H., & Pickett, M. D. (2011). Spice modeling of memristors. In 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

    Google Scholar 

  • Abuelmaatti, M. T., & Khalifa, Z. J. (2014). A new memristor emulator and its application in digital modulation. Analog Integrated Circuits and Signal Processing, 80(3), 577–584.

    Article  Google Scholar 

  • Abuelmaatti, M. T., & Khalifa, Z. J. (2015). A continuous-level memristor emulator and its application in a multivibrator circuit. AEU-International Journal of Electronics and Communications, 69(4), 771–775.

    Article  Google Scholar 

  • Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2013). Three fingerprints of memristor. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(11), 3008–3021.

    Article  Google Scholar 

  • Alharbi, A. G., Fouda, M. E., & Chowdhury, M. H. (2015a). Memristor emulator based on practical current controlled model. In 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1–4). IEEE.

    Google Scholar 

  • Alharbi, A. G., Fouda, M. E., & Chowdhury, M. H. (2015b). A novel memristor emulator based only on an exponential amplifier and ccii+. In 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (pp. 376–379). IEEE.

    Google Scholar 

  • Alharbi, A. G., Fouda, M. E., Khalifa, Z. J., & Chowdhury, M. H. (2016). Simple generic memristor emulator for voltage-controlled models. In 2016 IEEE 59th International Midwest Symposium on, Circuits and Systems (MWSCAS),Abu Dhabi, UAE (pp. 29–32). IEEE.

    Google Scholar 

  • Alharbi, A. G., Khalifa, Z. J., Fouda, M. E., & Chowdhury, M. H. (2015c). Memristor emulator based on single ccii. In 2015 27th International Conference on Microelectronics (ICM) (pp. 174–177). IEEE.

    Google Scholar 

  • Alharbi, A. G., Khalifa, Z. J., Fouda, M. E., & Chowdhury, M. H. (2015d). A new simple emulator circuit for current controlled memristor. In 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (pp. 288–291). IEEE.

    Google Scholar 

  • Asapu, S., & Pershin, Y. V. (2015). Electromechanical emulator of memristive systems and devices. IEEE Transactions on Electron Devices, 62(11), 3678–3684.

    Article  Google Scholar 

  • Ascoli, A., Corinto, F., Gilli, M., & Tetzlaff, R. (2014). Memristor for neuromorphic applications: Models and circuit implementations. In Memristors and Memristive Systems (pp. 379–403). Springer.

    Google Scholar 

  • Ascoli, A., Corinto, F., Senger, V., & Tetzlaff, R. (2013). Memristor model comparison. IEEE Circuits and Systems Magazine, 13(2), 89–105.

    Article  Google Scholar 

  • Batas, D., & Fiedler, H. (2011). A memristor spice implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Transactions on Nanotechnology, 10(2), 250–255.

    Article  Google Scholar 

  • Berdan, R., Lim, C., Khiat, A., Papavassiliou, C., & Prodromakis, T. (2014). A memristor spice model accounting for volatile characteristics of practical reram. IEEE Electron Device Letters, 35(1), 135–137.

    Article  Google Scholar 

  • Biolek, D., Bajer, J., Biolkova, V., & Kolka, Z. (2011). Mutators for transforming nonlinear resistor into memristor. In 2011 20th European Conference on Circuit Theory and Design (ECCTD) (pp. 488–491). IEEE.

    Google Scholar 

  • Biolek, D., Biolkova, V., & Biolek, Z. (2009). Spice model of memristor with nonlinear dopant drift. Radioengineering.

    Google Scholar 

  • Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on circuit theory, 18(5), 507–519.

    Article  Google Scholar 

  • Chua, L. (2014). If its pinched itsa memristor. Semiconductor Science and Technology, 29(10), 104001.

    Article  Google Scholar 

  • Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209–223.

    Article  MathSciNet  Google Scholar 

  • Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2013). A simple model of double-loop hysteresis behavior in memristive elements. IEEE Transactions on Circuits and Systems, 60(8), 487–491.

    Google Scholar 

  • Fouda, M., & Radwan, A. (2014). Simple floating voltage-controlled memductor emulator for analog applications. Radioengineering.

    Google Scholar 

  • Garcia-Redondo, F., Gowers, R., Crespo-Yepes, A., Lopez-Vallejo, M., & Jiang, L. (2016). Spice compact modeling of bipolar/unipolar memristor switching governed by electrical thresholds. IEEE Transactions on Circuits and Systems I Regular Papers (pp. 1–10).

    Google Scholar 

  • Hussein, A. I., & Fouda, M. E. (2013). A simple mos realization of current controlled memristor emulator. In 2013 25th International Conference on Microelectronics (ICM) (pp. 1–4). IEEE.

    Google Scholar 

  • Kim, H., Sah, M. P., Yang, C., Cho, S., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(10), 2422–2431.

    Article  MathSciNet  Google Scholar 

  • Kumngern, M., & Moungnoul, P. (2015). A memristor emulator circuit based on operational transconductance amplifiers. In 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1–5). IEEE.

    Google Scholar 

  • Liu, W., Wang, F.-Q., & Ma, X.-K. (2015). A unified cubic flux-controlled memristor: Theoretical analysis, simulation and circuit experiment. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 28(3), 335–345.

    Article  Google Scholar 

  • Pershin, Y. V., & Di Ventra, M. (2010). Practical approach to programmable analog circuits with memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(8), 1857–1864.

    Article  MathSciNet  Google Scholar 

  • Radwan, A. G., & Fouda, M. E. (2015). Memristor mathematical models and emulators. In On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor (pp. 51–84). Springer.

    Google Scholar 

  • Sánchez-López, C., Mendoza-Lopez, J., Carrasco-Aguilar, M., & Muñiz-Montero, C. (2014). A floating analog memristor emulator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(5), 309–313.

    Article  Google Scholar 

  • Shin, S., Kim, K., & Kang, S.-M. (2010). Compact models for memristors based on charge-flux constitutive relationships. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(4), 590–598.

    Article  Google Scholar 

  • Shin, S., Zheng, L., Weickhardt, G., Cho, S., & Kang, S.-M. S. (2013). Compact circuit model and hardware emulation for floating memristor devices. IEEE Circuits and Systems Magazine, 13(2), 42–55.

    Article  Google Scholar 

  • Sözen, H., & Çam, U. (2016). Electronically tunable memristor emulator circuit. Analog Integrated Circuits and Signal Processing (pp. 1–9).

    Google Scholar 

  • Strukov, D., Snider, G., Stewart, D., & Williams, R. (2008). The missing memristor found. Nature, 453(7191), 80–83.

    Article  Google Scholar 

  • Vaidyanathan, S. & Volos, C. (2016a). Advances and Applications in Chaotic Systems, (Vol. 636). Springer.

    Google Scholar 

  • Vaidyanathan, S., & Volos, C. (2016b). Advances and Applications in Nonlinear Control Systems, (Vol. 635). Springer.

    Google Scholar 

  • Vourkas, I., & Sirakoulis, G. C. (2016). Memristor-Based Nanoelectronic Computing Circuits and Architectures. Springer.

    Google Scholar 

  • Yener, S. C., & Kuntman, H. H. (2014). Fully cmos memristor based chaotic circuit. Radioengineering.

    Google Scholar 

  • YeÅŸil, A., Babacan, Y., & Kaçar, F. (2014). A new ddcc based memristor emulator circuit and its applications. Microelectronics Journal, 45(3), 282–287.

    Article  Google Scholar 

  • Yu, D., Iu, H. H.-C., Fitch, A. L., & Liang, Y. (2014). A floating memristor emulator based relaxation oscillator. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(10), 2888–2896.

    Article  Google Scholar 

  • Zhong, G.-Q. (1994). Implementation of chua’s circuit with a cubic nonlinearity. IEEE Transactions on Circuits and Systems-Part I-Fundamental Theory and Applications, 41(12), 934–940.

    Article  Google Scholar 

  • Zidan, M. A., Omran, H., Smith, C., Syed, A., Radwan, A. G., & Salama, K. N. (2014). A family of memristor-based reactance-less oscillators. International Journal of Circuit Theory and Applications, 42(11), 1103–1122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah G. Alharbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alharbi, A.G., Fouda, M.E., Chowdhury, M.H. (2017). A Novel Flux-Controlled Memristive Emulator for Analog Applications. In: Vaidyanathan, S., Volos, C. (eds) Advances in Memristors, Memristive Devices and Systems. Studies in Computational Intelligence, vol 701. Springer, Cham. https://doi.org/10.1007/978-3-319-51724-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51724-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51723-0

  • Online ISBN: 978-3-319-51724-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics