Skip to main content

Emergent Phenomena Caused by Bounded Capacity of Human Cognition

  • Chapter
  • First Online:
Physics of the Human Mind

Part of the book series: Understanding Complex Systems ((UCS))

  • 1606 Accesses

Abstract

In this chapter I discuss various systems where human mind plays a crucial role. I think that the description of such systems cannot be reduced to the paradigm of modern physics and propose to consider a number of problem where it becomes apparent. To justify this proposition it will be necessary to analyze in detail several particular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A recent discussion on free will and its understanding in psychology can be found, e.g., in a review by Baumeister and Monroe (2014).

  2. 2.

    Here the symbol v is used to denote the second coordinate of point (x, v) on the phase plane instead, e.g., the more often met symbol y. It is done to reserve the possibility of interpreting the variable v as the velocity, v = dxdt, in further constructions.

  3. 3.

    In the theory of traffic flow models generalizing (7.6) are often employed. They relate in a similar way the current acceleration a(t) = dvdt to the headway distance \(h(t -\overline{\tau })\) and the car velocity \(v(t -\overline{\tau })\) taken at the previous moment of time specified by some time shift \(\overline{\tau }\) (for a review see, e.g., Helbing 2001). However in our consideration dealInt:1ing with hypothetical perfectly rational drivers the time shift should be set equal to zero, \(\overline{\tau } = 0\).

  4. 4.

    The car-driving seems to be a more complex process than as it is conceived of here. In particular, to describe the car-following an extended phase space including also the jerk—time derivative of acceleration—is necessary (see Sect. 7.6). Nevertheless, here the car-driving is used to elucidate the key aspects in constructing the concept of action dynamical traps.

  5. 5.

    The value Δ = 0 was not used to avoid some pathological features appearing in transient processes in the absence of noise.

  6. 6.

    In this analysis we ignore time scales where, e.g., the effect of human leg inertia is essential.

References

  • Akaishi, R., Umeda, K., Nagase, A., Sakai, K.: Autonomous mechanism of internal choice estimate underlies decision inertia. Neuron 81 (1), 195–206 (2014)

    Article  Google Scholar 

  • Andersen, H.K., Grush, R.: A brief history of time-consciousness: historical precursors to James and Husserl. J. Hist. Philos. 47 (2), 277–307 (2009)

    Article  Google Scholar 

  • Asai, Y., Tasaka, Y., Nomura, K., Nomura, T., Casadio, M., Morasso, P.: A model of postural control in quiet standing: robust compensation of delay-induced instability using intermittent activation of feedback control. PLoS One 4 (7), e6169 (1–14) (2009)

    Google Scholar 

  • Asai, Y., Tateyama, S., Nomura, T.: Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface. PLoS ONE 8 (5), e62956 (19 pages) (2013)

    Google Scholar 

  • Balasubramaniam, R.: On the control of unstable objects: the dynamics of human stick balancing. In: Richardson, M., Riley, M., Shockley, K. (eds.) Progress in Motor Control: Neural, Computational and Dynamic Approaches, pp. 149–168. Springer Science+Business Media, New York (2013)

    Chapter  Google Scholar 

  • Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  ADS  Google Scholar 

  • Baron, J.: Thinking and Deciding, 4th edn. Cambridge University Press, New York (2008)

    Google Scholar 

  • Barrouillet, P.: Dual-process theories and cognitive development: advances and challenges. Dev. Rev. 31 (2–3), 79–85 (2011). Special Issue: Dual-Process Theories of Cognitive Development

    Google Scholar 

  • Baumeister, R.F., Monroe, A.E.: Recent research on free will: conceptualizations, beliefs, and processes. In: Olson, J.M., Zanna, M.P. (eds.) Advances in Experimental Social Psychology, vol. 50, pp. 1–52. Elsevier Inc., Amsterdam (2014)

    Google Scholar 

  • Bifulco, G.N., Pariota, L., Brackstione, M., Mcdonald, M.: Driving behaviour models enabling the simulation of advanced driving assistance systems: revisiting the action point paradigm. Transp. Res. C: Emerg. Technol. 36, 352–366 (2013)

    Article  Google Scholar 

  • Bottaro, A., Yasutake, Y., Nomura, T., Casadio, M., Morasso, P.: Bounded stability of the quiet standing posture: an intermittent control model. Hum. Mov. Sci. 27 (3), 473–495 (2008)

    Article  Google Scholar 

  • Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. F: Traffic Psychol. Behav. 2 (4), 181–196 (1999)

    Article  Google Scholar 

  • Cabrera, J.L., Milton, J.G.: On-off intermittency in a human balancing task. Phys. Rev. Lett. 89 (15), 158702(1–4) (2002)

    Google Scholar 

  • Cabrera, J.L., Milton, J.G.: Human stick balancing: tuning Lèvy flights to improve balance control. Chaos 14 (3), 691–698 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cabrera, J.L., Patzelt, F.: Human balancing tasks: power laws, intermittency, and Lévy flights. In: Jaeger, D., Jung, R. (eds.) Encyclopedia of Computational Neuroscience, pp. 1402–1408. Springer, New York (2015)

    Google Scholar 

  • Cartwright, N.: Nature’s Capacities and Their Measurement. Oxford University Press, New York (1989)

    Google Scholar 

  • Cartwright, N.: The Dappled World: A Study of the Boundaries of Science. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  • Cluff, T., Balasubramaniam, R.: Motor learning characterized by changing Lévy distributions. PLoS ONE 4 (6), e5998 (7 pages) (2009)

    Google Scholar 

  • Collins, J.J., De Luca, C.J.: Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp. Brain Res. 95 (2), 308–318 (1993)

    Article  Google Scholar 

  • Craik, K.: Theory of the human operator in control systems. I. The operator as an engineering system. Br. J. Psychol. Gen. Sect. 38 (2), 56–61 (1947)

    Google Scholar 

  • Eidelman, S., Crandall, C.: Bias in favor of the status quo. Soc. Personal. Psychol. Compass 6 (3), 270–281 (2012)

    Article  Google Scholar 

  • Eidelman, S., Crandall, C.S.: A psychological advantage for the status quo. In: Jost, J.T., Kay, A.C., Thorisdottir, H. (eds.) Social and Psychological Bases of Ideology and System Justification, pp. 85–106. Oxford University Press, Oxford (2009)

    Chapter  Google Scholar 

  • Eidelman, S., Crandall, C.S.: The intuitive traditionalist: how biases for existence and longevity promote the status quo. In: Olson, J.M., Zanna, M.P. (eds.) Advances in Experimental Social Psychology, vol. 50, pp. 53–104. Elsevier, Amsterdam (2014)

    Google Scholar 

  • Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Factors: J. Hum. Factors Ergon. Soc. 37 (1), 32–64 (1995)

    Article  Google Scholar 

  • Evans, J.: Dual-processing accounts of reasoning, judgment, and social cognition. Annu. Rev. Psychol. 59, 255–278 (2008)

    Article  Google Scholar 

  • Evans, J.S.: Dual-process theories of reasoning: contemporary issues and developmental applications. Dev. Rev. 31 (2–3), 86–102 (2011). Special Issue: Dual-Process Theories of Cognitive Development

    Google Scholar 

  • Gartner, N., Messer, C.J., Rathi, A.K. (eds.): Traffic Flow Theory: A State-of-the-Art Report. Transportation Research Board Special Report, 165 (1975). Revised edn., Federal Highway Administration, U.S. Department of Transportation, Washington DC (1997)

    Google Scholar 

  • Gawthrop, P., Loram, I., Lakie, M., Gollee, H.: Intermittent control: a computational theory of human control. Biol. Cybern. 104 (1–2), 31–51 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Gurusinghe, G.S., Nakatsuji, T., Azuta, Y., Ranjitkar, P., Tanaboriboon, Y.: Multiple car-following data with real-time kinematic global positioning system. Transp. Res. Rec.: J. Transp. Res. Board 1802 (1), 166–180 (2002)

    Google Scholar 

  • Hajimahmoodzadeh, M.: Dynamical states in condensed systems with anomalous kinetic coefficients. PhD thesis, Moscow State University, Moscow (2005). Supervised by Lubashevsky I.

    Google Scholar 

  • Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)

    Article  ADS  Google Scholar 

  • Hoogendoorn, S., Hoogendoorn, R., Daamen, W.: Wiedemann revisited—new trajectory filtering technique and its implications for car-following modeling. Transp. Res. Rec.: J. Transp. Res. Board 2260, 152–162 (2011)

    Google Scholar 

  • Horsthemke, W., Lefever, R.: Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology. Springer, Berlin (1984)

    MATH  Google Scholar 

  • Insperger, T.: Stick balancing with reflex delay in case of parametric forcing. Commun. Nonlinear Sci. Numer. Simul. 16 (4), 2160–2168 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Insperger, T., Milton, J.: Sensory uncertainty and stick balancing at the fingertip. Biol. Cybern. 108 (1), 85–101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Insperger, T., Milton, J., Stepan, G.: Semidiscretization for time-delayed neural balance control. SIAM J. Appl. Dyn. Syst. 14 (3), 1258–1277 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Iyengar, S.S., Lepper, M.R.: When choice is demotivating: can one desire too much of a good thing? J. Pers. Soc. Psychol. 79 (6), 995–1006 (2000)

    Article  Google Scholar 

  • Jones, D.E.H.: The stability of the bicycle. Phys. Today 23 (4), 34–40 (1970)

    Article  Google Scholar 

  • Kahneman, D.: Thinking, Fast and Slow. Farrar, Straus and Giroux, New York (2011)

    Google Scholar 

  • Kahneman, D., Knetsch, J.L., Thaler, R.H.: Anomalies: the endowment effect, loss aversion, and status quo bias. J. Econ. Perspect. 5 (1), 193–206 (1991)

    Article  Google Scholar 

  • Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Single-vehicle data of highway traffic: microscopic description of traffic phases. Phys. Rev. E 65 (5), 056133 (16 pages) (2002)

    Google Scholar 

  • Kowalczyk, P., Glendinning, P., Brown, M., Medrano-Cerda, G., Dallali, H., Shapiro, J.: Modelling human balance using switched systems with linear feedback control. J. R. Soc. Interface 9 (67), 234–245 (2012)

    Article  Google Scholar 

  • Lakshmanan, M., Senthilkumar, D.V.: Dynamics of Nonlinear Time-Delay Systems. Springer, Berlin (2010)

    MATH  Google Scholar 

  • Lavrenov, A.Y., Lubashevsky, I.A., Hajimahmoodzadeh, M., Katsnelson, A.A.: The structures of the states of the oscillator chain with dynamical traps. Bull. Lebedev Phys. Inst. 2, 1–8 (2005)

    Google Scholar 

  • Loram, I., Gollee, H., Lakie, M., Gawthrop, P.: Human control of an inverted pendulum: is continuous control necessary? Is intermittent control effective? Is intermittent control physiological? J. Physiol. 589 (2), 307–324 (2011)

    Article  MATH  Google Scholar 

  • Loram, I., Lakie, M.: Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements. J. Physiol. 540 (3), 1111–1124 (2002)

    Article  Google Scholar 

  • Loram, I., Lakie, M., Gawthrop, P.: Visual control of stable and unstable loads: what is the feedback delay and extent of linear time-invariant control? J. Physiol. 587 (6), 1343–1365 (2009)

    Article  Google Scholar 

  • Lubashevsky, I.: Dynamical traps caused by fuzzy rationality as a new emergence mechanism. Adv. Complex Syst. 15 (8), 1250045 (25 pages) (2012)

    Google Scholar 

  • Lubashevsky, I.: Human fuzzy rationality as a novel mechanism of emergent phenomena. In: Skiadas, C.H., Skiadas, C. (eds.) Handbook of Applications of Chaos Theory, pp. 827–878. CRC Press/Taylor & Francis Group, London (2016)

    Chapter  Google Scholar 

  • Lubashevsky, I.A., Gafiychuk, V.V., Demchuk, A.V.: Anomalous relaxation oscillations due to dynamical traps. Phys. A: Stat. Mech. Appl. 255 (3–4), 406–414 (1998)

    Article  Google Scholar 

  • Lubashevsky, I.A., Gusein-Zade, N.G., Chernigovskaya, E.M., Osipova, L.I.: Phase transition in a harmonic oscillator with dynamical traps. Bull. Lebedev Phys. Inst. 34(1), 15–20 (2007)

    Article  ADS  Google Scholar 

  • Lubashevsky, I., Ando, H.: Intermittent Control Properties of Car Following: Theory and Driving Simulator Experiments, pp. 1–25 (2016). arXiv preparing physics 1609.01812

    Google Scholar 

  • Lubashevsky, I., Hajimahmoodzadeh, M., Katsnelson, A., Wagner, P.: Noise-induced phase transition in an oscillatory system with dynamical traps. Eur. Phys. J. B Condens. Matter Complex Syst. 36 (1), 115–118 (2003)

    Article  Google Scholar 

  • Lubashevsky, I., Kalenkov, S., Mahnke, R.: Towards a variational principle for motivated vehicle motion. Phys. Rev. E 65, 036140 (5 pages) (2002)

    Google Scholar 

  • Lubashevsky, I., Mahnke, R., Hajimahmoodzadeh, M., Katsnelson, A.: Long-lived states of oscillator chains with dynamical traps. Eur. Phys. J. B Condens. Matter Complex Syst. 44 (1), 63–70 (2005)

    Article  Google Scholar 

  • Lubashevsky, I., Mahnke, R., Wagner, P., Kalenkov, S.: Long-lived states in synchronized traffic flow: empirical prompt and dynamical trap model. Phys. Rev. E 66, 016117 (13 pages) (2002)

    Google Scholar 

  • Lubashevsky, I., Parfenov, D.: Complex dynamics and phase transitions caused by fuzzy rationality. Chaotic Model. Simul. (1), 31–38 (2013)

    Google Scholar 

  • Lubashevsky, I., Wagner, P., Mahnke, R.: Bounded rational driver models. Eur. Phys. J. B Condens. Matter Complex Syst. 32 (2), 243–247 (2003a)

    Article  Google Scholar 

  • Lubashevsky, I., Wagner, P., Mahnke, R.: Rational-driver approximation in car-following theory. Phys. Rev. E 68 (5), 056109 (15 pages) (2003b)

    Google Scholar 

  • Mahnke, R., Kaupuzs, J., Lubashevsky, I.: Physics of Stochastic Processes: How Randomness Acts in Time. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2009)

    MATH  Google Scholar 

  • Mayer, H.C., Krechetnikov, R.: Walking with coffee: why does it spill? Phys. Rev. E 85 (4), 046117 (7 pages) (2012)

    Google Scholar 

  • Milton, J., Cabrera, J.L., Ohira, T., Tajima, S., Tonosaki, Y., Eurich, C., Campbell, S.: The time-delayed inverted pendulum: implications for human balance control. Chaos: Interdiscip. J. Nonlinear Sci. 19 (2), 026110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Milton, J.G.: Intermittent motor control: the “drift-and-act” hypothesis. In: Richardson, M.J., Riley, M.A. Shockley, K. (eds.) Progress in Motor: Control Neural, Computational and Dynamic Approaches, pp. 169–193. Springer Science+Business Media, New York (2013)

    Chapter  Google Scholar 

  • Milton, J., Insperger, T., Stepan, G.: Human balance control: dead zones, intermittency, and micro-chaos. In: Ohira, T., Uzawa, T. (eds.) Mathematical Approaches to Biological Systems: Networks, Oscillations, and Collective Motions, pp. 1–28. Springer, Tokyo (2015)

    Google Scholar 

  • Milton, J., Townsend, J., King, M., Ohira, T.: Balancing with positive feedback: the case for discontinuous control. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 367 (1891), 1181–1193 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Moreno-Bote, R., Rinzel, J., Rubin, N.: Noise-induced alternations in an attractor network model of perceptual bistability. J. Neurophysiol. 98 (3), 1125–1139 (2007)

    Article  Google Scholar 

  • Moss, F., Milton, J.G.: Medical technology: balancing the unbalanced. Nature 425 (6961), 911–912 (2003)

    Article  ADS  Google Scholar 

  • Nijhawan, R.: Visual prediction: psychophysics and neurophysiology of compensation for time delays. Behav. Brain Sci. 31 (02), 179–198 (2008)

    Google Scholar 

  • Pariota, L., Bifulco, G.N.: Experimental evidence supporting simpler action point paradigms for car-following. Transp. Res. F: Traffic Psychol. Behav. 35, 1–15 (2015)

    Article  Google Scholar 

  • Patzelt, F., Pawelzik, K.: Criticality of adaptive control dynamics. Phys. Rev. Lett. 107, 238103 (2011)

    Article  ADS  Google Scholar 

  • Patzelt, F., Riegel, M., Ernst, U., Pawelzik, K.: Self-organized critical noise amplification in human closed loop control. Front. Comput. Neurosci. 1, 4 (2007)

    Article  Google Scholar 

  • Poidevin, R.L.: The experience and perception of time. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Summer 2015 edn. Metaphysics Research Lab, Stanford University, Stanford (2015)

    Google Scholar 

  • Reason, J.: Human Error. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  • Reiter, U.: Empirical studies as basis for traffic flow models. In: Alçelik, R. (ed.) Proceedings of the Second International Symposium on Highway Capacity, Sydney, Aug 1994, vol. 2, pp. 493–502. Transportation Research Board (1994)

    Google Scholar 

  • Ritov, I., Baron, J.: Reluctance to vaccinate: omission bias and ambiguity. J. Behav. Decis. Mak. 3 (4), 263–277 (1990)

    Article  Google Scholar 

  • Ritov, I., Baron, J.: Status-quo and omission biases. J. Risk Uncertain. 5 (1), 49–61 (1992)

    Article  Google Scholar 

  • Samuelson, W., Zeckhauser, R.: Status quo bias in decision making. J. Risk Uncertain. 1 (1), 7–59 (1988)

    Article  Google Scholar 

  • Schwartz, B.: Self-determination: the tyranny of freedom. Am. Psychol. 55 (1), 79–88 (2000)

    Article  MathSciNet  Google Scholar 

  • Spranca, M., Minsk, E., Baron, J.: Omission and commission in judgment and choice. J. Exp. Soc. Psychol. 27 (1), 76–105 (1991)

    Article  Google Scholar 

  • Suzuki, T., Lubashevsky, I., Kanemoto, S.: Human response delay as a random variable: experiments on balancing overdamped virtual pendulum. In: Proceedings of the 48th ISCIE International Symposium on Stochastic Systems Theory and Its Applications, Fukuoka, 4–5 Nov 2016. Institute of Systems, Control and Information Engineers (ISCIE), Kyoto (2017)

    Google Scholar 

  • Suzuki, T., Miyazawa, T., Kanemoto, S., Lubashevsky, I.: Statistical properties of human response delay: analysis of virtual stick balancing experiments. In: Proceedings of the 46th ISCIE International Symposium on Stochastic Systems Theory and Its Applications, Kyoto, 1–2 Nov 2014, pp. 236–241. Institute of Systems, Control and Information Engineers (ISCIE), Kyoto (2015)

    Google Scholar 

  • Suzuki, Y., Nomura, T., Casadio, M., Morasso, P.: Intermittent control with ankle, hip, and mixed strategies during quiet standing: a theoretical proposal based on a double inverted pendulum model. J. Theor. Biol. 310, 55–79 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • The official site of TORCS: access on Dec 2015. http://torcs.sourceforge.net/index.php

  • Todosiev, E.P.: The action point model of the driver-vehicle system. Technical report 202A-3. Ph.D. dissertation, Ohio State University (1963)

    Google Scholar 

  • Todosiev, E.P., Barbosa, L.C.: A proposed model for the driver–vehicle system. Traffic Eng. 34, 17–20 (1963/1964)

    Google Scholar 

  • Treiber, M., Kesting, A.: Traffic Flow Dynamics: Data, Models and Simulation. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  • Tuller, B., Case, P., Ding, M., Kelso, J.A.S.: The nonlinear dynamics of speech categorization.. J. Exp. Psychol. Hum. Percept. Perform. 20 (1), 3–16 (1994)

    Article  Google Scholar 

  • Tversky, A., Shafir, E.: Choice under conflict: the dynamics of deferred decision. Psychol. Sci. 3 (6), 358–361 (1992)

    Article  Google Scholar 

  • Van den Broeck, C., Parrondo, J.M.R., Toral, R.: Noise-induced nonequilibrium phase transition. Phys. Rev. Lett. 73, 3395–3398 (1994)

    Article  ADS  Google Scholar 

  • Van den Broeck, C., Parrondo, J.M.R., Toral, R., Kawai, R.: Nonequilibrium phase transitions induced by multiplicative noise. Phys. Rev. E 55, 4084–4094 (1997)

    Article  ADS  Google Scholar 

  • Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  • van Rooij, M.M.J.W., Favela, L.H., Malone, M., Richardson, M.J.: Modeling the dynamics of risky choice. Ecol. Psychol. 25 (3), 293–303 (2013)

    Article  Google Scholar 

  • Wagner, P.: How human drivers control their vehicle. Eur. Phys. J. B Condens. Matter Complex Syst. 52 (3), 427–431 (2006)

    Article  Google Scholar 

  • Wagner, P.: Analyzing fluctuations in car-following. Transp. Res. B Methodol. 46 (10), 1384–1392 (2012)

    Article  Google Scholar 

  • Wagner, P., Lubashevsky, I.: Empirical Basis for Car-Following Theory Development (2003). arXiv preprint cond-mat/0311192

    Google Scholar 

  • Yamauchi, R., Lubashevsky, I., Hijikata, K., Ando, H.: Mesolevel intermittency of car-driving as alternating choice of driving-styles. In: Proceedings of the 48th ISCIE International Symposium on Stochastic Systems Theory and Its Applications, Fukuoka, 4–5 Nov 2016. Institute of Systems, Control and Information Engineers (ISCIE), Kyoto (2017)

    Google Scholar 

  • Yoshikawa, N., Suzuki, Y., Kiyono, K., Nomura, T.: Intermittent feedback-control strategy for stabilizing inverted pendulum on manually controlled cart as analogy to human stick balancing. Front. Comput. Neurosci. 10, Article 34, 19 (2016)

    Google Scholar 

  • Zaslavsky, G.M.: From Hamiltonian chaos to Maxwell’s Demon. Chaos 5 (4), 653–661 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zaslavsky, G.M.: Dynamical traps. Phys. D: Nonlinear Phenomena 168–169, 292–304 (2002). {VII} Latin American Workshop on Nonlinear Phenomena

    Google Scholar 

  • Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, New York (2005)

    MATH  Google Scholar 

  • Zgonnikov, A., Kanemoto, S., Lubashevsky, I., Suzuki, T.: How the type of visual feedback affects actions of human operators: the case of virtual stick balancing. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), City University of Hong-Kong, 9–12 Oct 2015, pp. 1100–1103 (2015)

    Google Scholar 

  • Zgonnikov, A., Lubashevsky, I.: Complex dynamics of multiparticle system governed by bounded rationality. Chaotic Model. Simul. (1), 60–66 (2013)

    Google Scholar 

  • Zgonnikov, A., Lubashevsky, I.: Extended phase space description of human-controlled systems dynamics. Prog. Theor. Exp. Phys. 2014 (3), 033J02 (2014)

    Google Scholar 

  • Zgonnikov, A., Lubashevsky, I.: Double-well dynamics of noise-driven control activation in human intermittent control: the case of stick balancing. Cogn. Process. 16 (4), 351–358 (2015)

    Article  Google Scholar 

  • Zgonnikov, A., Lubashevsky, I.: Noise-Induced Phase Transition in the Model of Human Virtual Stick Balancing (2016). e-print: arxiv:1609.03962

    Google Scholar 

  • Zgonnikov, A., Lubashevsky, I., Kanemoto, S., Miyazawa, T., Suzuki, T.: To react or not to react? Intrinsic stochasticity of human control in virtual stick balancing. J. R. Soc. Interface 11, 20140636 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lubashevsky, I. (2017). Emergent Phenomena Caused by Bounded Capacity of Human Cognition. In: Physics of the Human Mind. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-51706-3_7

Download citation

Publish with us

Policies and ethics