Skip to main content

Modelling Non-paradoxical Loss of Information in Black Hole Evaporation

  • Chapter
  • First Online:
Gravity and the Quantum

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 187))

Abstract

We give general overview of a novel approach, recently developed by us, to address the issue black hole information paradox. This alternative viewpoint is based on theories involving modifications of standard quantum theory, known as “spontaneous dynamical state reduction” or “wave-function collapse models” which were historically developed to overcome the notorious foundational problems of quantum mechanics known as the “measurement problem”. We show that these proposals, when appropriately adapted and refined for this context, provide a self-consistent picture where loss of information in the evaporation of black holes is no longer paradoxical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, region I’, although flat, is also part of the interior of the event horizon as nothing in that region can ever reach \({\mathscr {I}}_R^+\).

  2. 2.

    Up to the regime where we expect the validity of standard space-time notions as provided by General Relativity.

References

  1. A. Almheiri, D. Marolf, J. Polchinski, J. Sully, Black holes: complementarity or firewalls? JHEP 1302, 062 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. T. Banks, L. Susskind, M.E. Peskin, Difficulties for the evolution of pure states into mixed states. Nucl. Phys. B 244, 125 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Bassi, G.C. Ghirardi, Dynamical reduction models. Phys. Reports 379, 257 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471 (2013)

    Article  ADS  Google Scholar 

  5. D. Bedingham, Relativistic state reduction model. J. Phys. Conf. Ser. 306, 012034 (2011)

    Article  Google Scholar 

  6. D. Bedingham, S.K. Modak, D. Sudarsky, Relativistic collapse dynamics and black hole information loss. arXiv:1604.06537 [gr-qc]

  7. J. Bell, Against measurement (1990)

    Google Scholar 

  8. C.G. Callan, S.B. Giddings, J.A. Harvey, A. Strominger, Evanescent black holes. Phys. Rev. D 45, R1005 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Fabbri, J. Navarro-Salas, Modeling Black Hole Evaporation (Imperial College Press, London, 2005)

    Book  MATH  Google Scholar 

  10. G. Ghirardi, A. Rimini, T. Weber, A model for a unified quantum description of macroscopic and microscopic systems, in Quantum Probability and Applications, ed. by A.L. Accardi (Springer, Heidelberg, 1985), pp. 223–232

    Chapter  Google Scholar 

  11. G. Ghirardi, A. Rimini, T. Weber, Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. G. Ghirardi, P. Pearle, A. Rimini, Markov-processes in Hilbert-space and continuous spontaneouslocalization of systems of identical particles. Phys. Rev. A 42, 7889 (1990)

    Google Scholar 

  13. G. Ghirardi, R. Grassi, P. Pearle, Relativistic dynamical reduction models: general framework and examples. Found. Phys. (J.S. Bell’s 60th birthday issue) 20, 1271 (1990)

    Google Scholar 

  14. S.B. Giddings, W.M. Nelson, Quantum emission from two-dimensional black holes. Phys. Rev. D 46, 2486 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  15. S.W. Hawking, Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  16. K. Lochan, S. Chakraborty, T. Padmanabhan, Information retrieval from black holes. arXiv:1604.04987 [gr-qc]

  17. K. Lochan, T. Padmanabhan, Extracting information about the initial state from the black hole radiation. Phys. Rev. Lett. 116(5), 051301 (2016)

    Article  ADS  MATH  Google Scholar 

  18. S.D. Mathur, The Information paradox: a pedagogical introduction. Classic. Quantum Gravity 26, 224001 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. S.K. Modak, L. Ortíz, I. Peña, D. Sudarsky, Non-paradoxical loss of information in black hole evaporation in a quantum collapse model. Phys. Rev. D 91(12), 124009 (2015)

    Google Scholar 

  20. S.K. Modak, L. Ortíz, I. Peña, D. Sudarsky, Black hole evaporation: information loss but no paradox. Gen. Rel. Grav. 47(10), 120 (2015)

    Google Scholar 

  21. E. Okon, D. Sudarsky, Benefits of objective collapse models for cosmology and quantum gravity. Found. Phys. 44, 114–143 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. E. Okon, D. Sudarsky, The black hole information paradox and the collapse of the wave function. Found. Phys. 45, 461–470 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. P. Pearle, Reduction of the state vector by a nonlinear Schrodinger equation. Phys. Rev. D 13, 857 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  24. P. Pearle, Towards explaining why events occur. Int. J. Theor. Phys. 18, 489 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  25. P. Pearle, Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A 39, 2277–2289 (1989)

    Article  ADS  Google Scholar 

  26. P. Pearle, Collapse models. arXiv: quant-ph/9901077

  27. P. Pearle, Collapse Miscellany. Contributed in 80th birthday Issue of Yakir Aharanov. arXiv:1209.5082 [quant-ph]

  28. P. Pearle, Toward a relativistic theory of statevector reduction, in Sixty-Two Years of Uncertainty, ed. by A. Miller (Plenum, New York, 1990), pp. 193–214

    Chapter  Google Scholar 

  29. P. Pearle, A relativistic dynamical collapse model. arXiv:1412.6723 [quant-ph]

  30. R. Penrose, Newton, quantum theory and reality, in Three Hundred Years of Gravitation, ed. by S.W. Hawking, W. Israel (Cambridge University Press, New York, 1989), p. 17

    Google Scholar 

  31. R. Penrose, On gravity’s role in quantum state reduction. General Relativ. Gravit. 28, 581 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. L. Susskind, L. Thorlacius, J. Uglum, The stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  33. R. Tumulka, A relativistic version of the Ghirardi–Rimini–Weber model. J. Stat. Phys. 125, 821 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. R. Tumulka, On spontaneous wave function collapse and quantum field theory. Proc. R. Soc. A 462, 1897 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. W.G. Unruh, R.M. Wald, On evolution laws taking pure states to mixed states in quantum field theory. Phys. Rev. D 52, 2176–2182 (1995)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We want to thank our collaborators E. Okon, L. Ortíz, I. Peña, D. Bedingham for their involvement and contribution towards this project. SKM is an International Research Fellow of Japan Society for the Promotion of Science. This research is partly funded by Grant-in-Aid to JSPS fellows (KAKENHI-PROJECT-15F15021). DS acknowledges partial financial support from DGAPA-UNAM project IG100316 and by CONACyT project 101712.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy K. Modak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Modak, S.K., Sudarsky, D. (2017). Modelling Non-paradoxical Loss of Information in Black Hole Evaporation. In: Bagla, J., Engineer, S. (eds) Gravity and the Quantum. Fundamental Theories of Physics, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-319-51700-1_18

Download citation

Publish with us

Policies and ethics