Skip to main content

Carbon Nanotubes and Graphene for Microwave/RF Electronics Packaging

  • Chapter
  • First Online:
RF and Microwave Microelectronics Packaging II

Abstract

With the development of microelectronic processing technologies, electronic devices are constantly scaled down with better performance and lower cost. Further advance in scaling down below current 10nm is very challenging and almost approaching theoretical limit. For example, electrical resistivity of copper interconnects increases with the shrinkage of dimension due to grain-boundary and surface scattering. Electromigration and hot spot of metal interconnects would also become big problems. With the most recent development of three-dimensional (3D) integration, vertical dimension is expected to dramatically promote the integration density. Effective thermal management and heat dissipation is becoming a more and more important topic in developing high performance and reliability semiconductor devices, especially for microwave/RF microelectronics which have high power consumption and heat generation during operation. To address these issues, carbon nanotubes (CNTs) and graphene have been proposed and extensively studied as potential candidate materials for RF electronic packaging because of their ultra-high electrical conductivity, thermal conductivity and stability, resistance to electromigration, and mechanical strength. This chapter is going to present a comprehensive review of CNTs and graphene advanced materials properties, potential applications and challenges in RF microelectronic packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore, GE. 1975. Progress in digital integrated electronics. Electron Devices Meeting, 1975 International, (IEEE), 11–13.

    Google Scholar 

  2. Steinlesberger, G., et al. 2002. Electrical assessment of copper damascene interconnects down to sub-50 nm feature sizes. Microelectronic Engineering 64(1–4): 409–416.

    Article  Google Scholar 

  3. Kreupl, F., et al. 2002. Carbon nanotubes in interconnect applications. Microelectronic Engineering 64(1–4): 399–408.

    Article  Google Scholar 

  4. Li, J., et al. 2003. Bottom-up approach for carbon nanotube interconnects. Applied Physics Letters 82(15): 2491–2493.

    Article  Google Scholar 

  5. Naeemi, A., R. Sarvari, and J.D. Meindl. 2005. Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Electron Device Letters 26(2): 84–86.

    Article  Google Scholar 

  6. Mizuhisa, N., H. Masahiro, K. Akio, and A. Yuji. 2004. Simultaneous formation of multiwall carbon nanotubes and their end-bonded ohmic contacts to Ti electrodes for future ULSI interconnects. Japanese Journal of Applied Physics 43(4S): 1856.

    Google Scholar 

  7. Naeemi, A., and J.D. Meindl. 2005. Impact of electron-phonon scattering on the performance of carbon nanotube interconnects for GSI. IEEE Electron Device Letters 26(7): 476–478.

    Article  Google Scholar 

  8. Myounggu, P., et al. 2006. Effects of a carbon nanotube layer on electrical contact resistance between copper substrates. Nanotechnology 17(9): 2294.

    Article  Google Scholar 

  9. Nieuwoudt, A., and Y. Massoud. 2006. Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques. IEEE Transactions on Nanotechnology 5(6): 758–765.

    Article  Google Scholar 

  10. Dresselhaus, M., G. Dresselhaus, and R. Saito. 1995. Physics of carbon nanotubes. Carbon 33(7): 883–891.

    Article  Google Scholar 

  11. Lu, X., and Z. Hu. 2012. Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling. Composites Part B: Engineering 43(4): 1902–1913.

    Article  MathSciNet  Google Scholar 

  12. Yakobson, B.I., C.J. Brabec, and J. Bernholc. 1996. Nanomechanics of carbon tubes: instabilities beyond linear response. Physical Review Letters 76(14): 2511–2514.

    Article  Google Scholar 

  13. Qiang, L., A. Marino, and H. Rui. 2009. Elastic bending modulus of monolayer graphene. Journal of Physics D: Applied Physics 42(10): 102002.

    Article  Google Scholar 

  14. Liew, K.M., X.Q. He, and C.H. Wong. 2004. On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Materialia 52(9): 2521–2527.

    Article  Google Scholar 

  15. Lourie, O., D.M. Cox, and H.D. Wagner. 1998. Buckling and collapse of embedded carbon nanotubes. Physical Review Letters 81(8): 1638–1641.

    Article  Google Scholar 

  16. Zhang, C.-L., and H.-S. Shen. 2006. Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation. Carbon 44(13): 2608–2616.

    Article  Google Scholar 

  17. Lee, C., X. Wei, J.W. Kysar, and J. Hone. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887): 385.

    Article  Google Scholar 

  18. Ricardo, F., A.D. Pablo, P. Helena, G. Cecilia, and W.M. Álvaro. 2009. Mechanical properties of graphene nanoribbons. Journal of Physics: Condensed Matter 21(28): 285304.

    Google Scholar 

  19. Liu F, Ming P, and Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B 76(6): 064120.

    Google Scholar 

  20. Hernández, E., C. Goze, P. Bernier, and A. Rubio. 1998. Elastic properties of C and B x C y N z composite nanotubes. Physical Review Letters 80(20): 4502–4505.

    Article  Google Scholar 

  21. Ávila, A.F., and G.S.R. Lacerda. 2008. Molecular mechanics applied to single-walled carbon nanotubes. Materials Research 11: 325–333.

    Article  Google Scholar 

  22. Guanghua, G., Ç. Tahir, and A.G. William III. 1998. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9(3): 184.

    Article  Google Scholar 

  23. Li, C., and T.-W. Chou. 2003. Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Composites Science and Technology 63(11): 1517–1524.

    Article  Google Scholar 

  24. Treacy, M.M.J., T.W. Ebbesen, and J.M. Gibson. 1996. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584): 678–680.

    Article  Google Scholar 

  25. Wong, E.W., P.E. Sheehan, and C.M. Lieber. 1997. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334): 1971.

    Article  Google Scholar 

  26. Lu, J.P. 1997. Elastic properties of carbon nanotubes and nanoropes. Physical Review Letters 79(7): 1297–1300.

    Article  Google Scholar 

  27. Krishnan, A., E. Dujardin, T.W. Ebbesen, P.N. Yianilos, and M.M.J. Treacy. 1998. Young’s modulus of single-walled nanotubes. Physical Review B 58(20): 14013–14019.

    Article  Google Scholar 

  28. Salvetat, J.-P., et al. 1999. Mechanical properties of carbon nanotubes. Applied Physics A 69(3): 255–260.

    Article  Google Scholar 

  29. Yu, M.-F., B.S. Files, S. Arepalli, and R.S. Ruoff. 2000. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters 84(24): 5552–5555.

    Article  Google Scholar 

  30. Tombler, T.W., et al. 2000. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405(6788): 769–772.

    Article  Google Scholar 

  31. Demczyk, B.G., et al. 2002. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Materials Science and Engineering A 334(1–2): 173–178.

    Article  Google Scholar 

  32. Xiao, J.R., B.A. Gama, and J.W. Gillespie Jr. 2005. An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. International Journal of Solids and Structures 42(11–12): 3075–3092.

    Article  MATH  Google Scholar 

  33. Kirtania, S., and D. Chakraborty. 2007. Finite element based characterization of carbon nanotubes. Journal of Reinforced Plastics and Composites 26(15): 1557–1570.

    Article  Google Scholar 

  34. Ding, W., et al. 2007. Modulus, fracture strength, and brittle vs plastic response of the outer shell of Arc-grown multi-walled carbon nanotubes. Experimental Mechanics 47(1): 25–36.

    Article  Google Scholar 

  35. Ji-nan, L., and C. Hai-bo. 2008. Analysis of single-walled carbon nanotubes using a chemical bond element model. Chinese Journal of Chemical Physics 21(4): 353.

    Article  Google Scholar 

  36. Huang, M. 2009. Studies of mechanically deformed single walled carbon nanotubes and graphene by optical spectroscopy. PhD, Columbia University.

    Google Scholar 

  37. Rossi, M., and M. Meo. 2009. On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach. Composites Science and Technology 69(9): 1394–1398.

    Article  Google Scholar 

  38. Meo, M., and M. Rossi. 2006. Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Composites Science and Technology 66(11–12): 1597–1605.

    Article  Google Scholar 

  39. Blakslee, O.L., D.G. Proctor, E.J. Seldin, G.B. Spence, and T. Weng. 1970. Elastic constants of compression-annealed pyrolytic graphite. Journal of Applied Physics 41(8): 3373–3382.

    Article  Google Scholar 

  40. Bunch, J.S., et al. 2008. Impermeable atomic membranes from graphene sheets. Nano Letters 8(8): 2458–2462.

    Article  Google Scholar 

  41. Shokrieh, M.M., and R. Rafiee. 2010. Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Materials & Design 31(2): 790–795.

    Article  Google Scholar 

  42. Odom, T.W., J.-L. Huang, P. Kim, and C.M. Lieber. 1998. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662): 62–64.

    Article  Google Scholar 

  43. Wilder, J.W.G., L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker. 1998. Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662): 59–62.

    Article  Google Scholar 

  44. Peierls, R.E. 1955. Quantum Theory of Solids. Oxford: Clarendon Press.

    MATH  Google Scholar 

  45. Yao, Z., C.L. Kane, and C. Dekker. 2000. High-field electrical transport in single-wall carbon nanotubes. Physical Review Letters 84(13): 2941–2944.

    Article  Google Scholar 

  46. Wei, B.Q., R. Vajtai, and P.M. Ajayan. 2001. Reliability and current carrying capacity of carbon nanotubes. Applied Physics Letters 79(8): 1172–1174.

    Article  Google Scholar 

  47. Naeemi, A., and J.D. Meindl. 2006. Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electron Device Letters 27(5): 338–340.

    Article  Google Scholar 

  48. Matsumura, H., and T. Ando. 2001. Conductance of carbon nanotubes with a Stone–Wales defect. Journal of the Physical Society of Japan 70(9): 2657–2665.

    Article  Google Scholar 

  49. Watts, P.C.P., W.-K. Hsu, H.W. Kroto, and D.R.M. Walton. 2003. Are bulk defective carbon nanotubes less electrically conducting? Nano Letters 3(4): 549–553.

    Article  Google Scholar 

  50. Reyes, S.A., A. Struck, and S. Eggert. 2009. Lattice defects and boundaries in conducting carbon nanotubes. Physical Review B 80(7): 075115.

    Article  Google Scholar 

  51. Yoon, Y.-G., M.S.C. Mazzoni, H.J. Choi, J. Ihm, and S.G. Louie. 2001. Structural deformation and intertube conductance of crossed carbon nanotube junctions. Physical Review Letters 86(4): 688–691.

    Article  Google Scholar 

  52. Buldum, A., and J.P. Lu. 2001. Contact resistance between carbon nanotubes. Physical Review B 63(16): 161403.

    Article  Google Scholar 

  53. Tersoff, J. 1999. Contact resistance of carbon nanotubes. Applied Physics Letters 74(15): 2122–2124.

    Article  Google Scholar 

  54. Lee, J.O., et al. 2000. Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method. Journal of Physics 33((16)): 1953–1956.

    Google Scholar 

  55. Stetter, A.V.J., and C.H. Back. Conductivity of multiwall carbon nanotubes: role of multiple shells and defects. Physical Review B 82((11)): 115451–1151e5.

    Google Scholar 

  56. Novoselov, K.S., et al. 2004. Electric field effect in atomically thin carbon films. Science 306(5696): 666.

    Article  Google Scholar 

  57. Chen, J.-H., C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer. 2008. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology 3(4): 206–209.

    Article  Google Scholar 

  58. Baughman RH, Zakhidov AA, and de Heer WA (2002) Carbon nanotubes—The route toward applications Science297(5582):787.

    Google Scholar 

  59. Pop, E., D. Mann, Q. Wang, K. Goodson, and H. Dai. 2006. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Letters 6(1): 96–100.

    Article  Google Scholar 

  60. Fujii, M., et al. 2005. Measuring the thermal conductivity of a single carbon nanotube. Physical Review Letters 95(6): 065502.

    Article  Google Scholar 

  61. Ren, C., W. Zhang, Z. Xu, Z. Zhu, and P. Huai. 2010. Thermal conductivity of single-walled carbon nanotubes under axial stress. The Journal of Physical Chemistry C 114(13): 5786–5791.

    Article  Google Scholar 

  62. Guthy, C., F. Du, S. Brand, K.I. Winey, and J.E. Fischer. 2007. Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites. Journal of Heat Transfer 129(8): 1096–1099.

    Article  Google Scholar 

  63. Hone, J., M. Whitney, C. Piskoti, and A. Zettl. 1999. Thermal conductivity of single-walled carbon nanotubes. Physical Review B 59(4): R2514–R2516.

    Article  Google Scholar 

  64. Savin, A.V., B. Hu, and Y.S. Kivshar. 2009. Thermal conductivity of single-walled carbon nanotubes. Physical Review B 80(19): 195423.

    Article  Google Scholar 

  65. Mingo, N., and D.A. Broido. 2005. Carbon nanotube ballistic thermal conductance and its limits. Physical Review Letters 95(9): 096105.

    Article  Google Scholar 

  66. Mohamed, A.O., and S. Deepak. 2001. Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 12(1): 21.

    Article  Google Scholar 

  67. Yu, C., L. Shi, Z. Yao, D. Li, and A. Majumdar. 2005. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Letters 5(9): 1842–1846.

    Article  Google Scholar 

  68. Kwon, Y.-K., and P Kim. 2006. Unusually high thermal conductivity in carbon nanotubes. In High Thermal Conductivity Materials, eds. SL Shindé and JS Goela, 227–265. New York: Springer.

    Google Scholar 

  69. Berber, S., Y.-K. Kwon, and D. Tománek. 2000. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters 84(20): 4613–4616.

    Article  Google Scholar 

  70. Jianwei, C., Ç. Tahir, and A.G. William III. 2000. Thermal conductivity of carbon nanotubes. Nanotechnology 11(2): 65.

    Article  Google Scholar 

  71. Choi, T.-Y., D. Poulikakos, J. Tharian, and U. Sennhauser. 2006. Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method. Nano Letters 6(8): 1589–1593.

    Article  Google Scholar 

  72. Mingo, N., and D.A. Broido. 2005. Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”. Nano Letters 5(7): 1221–1225.

    Article  Google Scholar 

  73. Takahiro, Y., N. Yoshiki, and W. Kazuyuki. 2007. Control of electron- and phonon-derived thermal conductances in carbon nanotubes. New Journal of Physics 9(8): 245.

    Article  Google Scholar 

  74. Wei, Z., et al. 2004. Chirality dependence of the thermal conductivity of carbon nanotubes. Nanotechnology 15(8): 936.

    Article  Google Scholar 

  75. Kim, P., L. Shi, A. Majumdar, and P.L. McEuen. 2001. Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters 87(21): 215502.

    Article  Google Scholar 

  76. Cao, J.X., X.H. Yan, Y. Xiao, and J.W. Ding. 2004. Thermal conductivity of zigzag single-walled carbon nanotubes: role of the umklapp process. Physical Review B 69(7): 073407.

    Article  Google Scholar 

  77. Maruyama, S. 2003. A Molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube. Microscale Thermophysical Engineering 7(1): 41–50.

    Article  MathSciNet  Google Scholar 

  78. Padgett, C.W., and D.W. Brenner. 2004. Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes. Nano Letters 4(6): 1051–1053.

    Article  Google Scholar 

  79. Tang, K., et al. 2013. Molecular dynamics simulation on thermal conductivity of single-walled carbon nanotubes. In Electronic Packaging Technology (ICEPT), 2013 14th International Conference on, 583–586.

    Google Scholar 

  80. Guo, Z.-x., and Gong X-g. 2009. Molecular dynamics studies on the thermal conductivity of single-walled carbon nanotubes. Frontiers of Physics in China 4(3): 389–392.

    Article  Google Scholar 

  81. Pettes, M.T., and L. Shi. 2009. Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes. Advanced Functional Materials 19(24): 3918–3925.

    Article  Google Scholar 

  82. Yamamoto, T., and K. Watanabe. 2006. Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes. Physical Review Letters 96(25): 255503.

    Article  Google Scholar 

  83. Wang, Z.L., et al. 2007. Length-dependent thermal conductivity of an individual single-wall carbon nanotube. Applied Physics Letters 91(12): 123119.

    Article  Google Scholar 

  84. Mizel, A., et al. 1999. Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes. Physical Review B 60(5): 3264–3270.

    Article  Google Scholar 

  85. Yang, D.J., et al. 2002. Thermal conductivity of multiwalled carbon nanotubes. Physical Review B 66(16): 165440.

    Article  Google Scholar 

  86. Hone, J., B. Batlogg, Z. Benes, A.T. Johnson, and J.E. Fischer. 2000. Quantized phonon spectrum of single-wall carbon nanotubes. Science 289(5485): 1730.

    Article  Google Scholar 

  87. Balandin, A.A., et al. 2008. Superior thermal conductivity of single-layer graphene. Nano Letters 8(3): 902–907.

    Article  Google Scholar 

  88. Cai, W., et al. 2010. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Letters 10(5): 1645–1651.

    Article  Google Scholar 

  89. Faugeras, C., et al. 2010. Thermal conductivity of graphene in corbino membrane geometry. ACS Nano 4(4): 1889–1892.

    Article  Google Scholar 

  90. Xu X, et al. 2014. Length-dependent thermal conductivity in suspended single-layer graphene. Nature Communications 5. Article number:3689.

    Google Scholar 

  91. Lee, J.-U., D. Yoon, H. Kim, S.W. Lee, and H. Cheong. 2011. Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Physical Review B 83(8): 081419.

    Article  Google Scholar 

  92. Seol, J.H., et al. 2010. Two-dimensional phonon transport in supported graphene. Science 328(5975): 213.

    Article  Google Scholar 

  93. Klemens, P.G. 2001. Theory of thermal conduction in thin ceramic films. International Journal of Thermophysics 22(1): 265–275.

    Article  Google Scholar 

  94. Pettes, M.T., I. Jo, Z. Yao, and L. Shi. 2011. Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Letters 11(3): 1195–1200.

    Article  Google Scholar 

  95. Xu, J., and T.S. Fisher. 2006. Enhancement of thermal interface materials with carbon nanotube arrays. International Journal of Heat and Mass Transfer 49(9–10): 1658–1666.

    Article  Google Scholar 

  96. Gwinn, J.P., and R.L. Webb. 2003. Performance and testing of thermal interface materials. Microelectronics Journal 34(3): 215–222.

    Article  Google Scholar 

  97. Prasher, R. 2006. Thermal interface materials: historical perspective, status, and future directions. Proceedings of the IEEE 94(8): 1571–1586.

    Article  Google Scholar 

  98. Prasher, R.S. 2001. Surface chemistry and characteristics based model for the thermal contact resistance of fluidic interstitial thermal interface materials. Journal of Heat Transfer 123(5): 969–975.

    Article  Google Scholar 

  99. Yu, A., P. Ramesh, M.E. Itkis, E. Bekyarova, and R.C. Haddon. 2007. Graphite nanoplatelet−epoxy composite thermal interface materials. The Journal of Physical Chemistry C 111(21): 7565–7569.

    Article  Google Scholar 

  100. Aoyagi, Y., C.-K. Leong, and D.D.L. Chung. 2006. Polyol-based phase-change thermal interface materials. Journal of Electronic Materials 35(3): 416–424.

    Article  Google Scholar 

  101. Chung, D.D.L. 2001. Thermal interface materials. Journal of Materials Engineering and Performance 10(1): 56–59.

    Article  Google Scholar 

  102. Howe, T.A., C.-K. Leong, and D.D.L. Chung. 2006. Comparative evaluation of thermal interface materials for improving the thermal contact between an operating computer microprocessor and its heat sink. Journal of Electronic Materials 35(8): 1628–1635.

    Article  Google Scholar 

  103. Liu, Z., and D.D.L. Chung. 2001. Calorimetric evaluation of phase change materials for use as thermal interface materials. Thermochimica Acta 366(2): 135–147.

    Article  MathSciNet  Google Scholar 

  104. Maguire, L., M. Behnia, and G. Morrison. 2005. Systematic evaluation of thermal interface materials—a case study in high power amplifier design. Microelectronics Reliability 45(3–4): 711–725.

    Article  Google Scholar 

  105. Prasher, R.S. 2004. Rheology based modeling and design of particle laden polymeric thermal interface materials. In Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM’04. The Ninth Intersociety Conference on, Vol. 31, 36–44.

    Google Scholar 

  106. Vishal, S., T. Siegmund, and S.V. Garimella. 2004. Optimization of thermal interface materials for electronics cooling applications. IEEE Transactions on Components and Packaging Technologies 27(2): 244–252.

    Article  Google Scholar 

  107. Pour Shahid Saeed Abadi, P., C.-K. Leong, and D.D.L. Chung. 2008. Factors that govern the performance of thermal interface materials. Journal of Electronic Materials 38(1): 175–192.

    Article  Google Scholar 

  108. Aoyagi, Y., and D.D.L. Chung. 2008. Antioxidant-based phase-change thermal interface materials with high thermal stability. Journal of Electronic Materials 37(4): 448–461.

    Article  Google Scholar 

  109. De Mey, G., et al. 2009. Influence of interface materials on the thermal impedance of electronic packages. International Communications in Heat and Mass Transfer 36(3): 210–212.

    Article  Google Scholar 

  110. Lin, C., and D.D.L. Chung. 2009. Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials. Carbon 47(1): 295–305.

    Article  Google Scholar 

  111. Liu, X., Y. Zhang, A.M. Cassell, and B.A. Cruden. 2008. Implications of catalyst control for carbon nanotube based thermal interface materials. Journal of Applied Physics 104(8): 084310.

    Article  Google Scholar 

  112. Hata, K., et al. 2004. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700): 1362.

    Article  Google Scholar 

  113. Zhu, L., Y. Xiu, D.W. Hess, and C.-P. Wong. 2005. Aligned carbon nanotube stacks by water-assisted selective etching. Nano Letters 5(12): 2641–2645.

    Article  Google Scholar 

  114. Qu, L., and L. Dai. 2007. Gecko-foot-mimetic aligned single-walled carbon nanotube dry adhesives with unique electrical and thermal properties. Advanced Materials 19(22): 3844–3849.

    Article  Google Scholar 

  115. Hofmann, S., C. Ducati, J. Robertson, and B. Kleinsorge. 2003. Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Applied Physics Letters 83(1): 135–137.

    Article  Google Scholar 

  116. Nikolaev, P., et al. 1999. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physics Letters 313(1–2): 91–97.

    Article  Google Scholar 

  117. Andrews, R., et al. 1999. Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chemical Physics Letters 303(5–6): 467–474.

    Article  Google Scholar 

  118. Xu, Y.-Q., et al. 2006. Vertical array growth of small diameter single-walled carbon nanotubes. Journal of the American Chemical Society 128(20): 6560–6561.

    Article  Google Scholar 

  119. Zhu, L., Y. Sun, D.W. Hess, and C.-P. Wong. 2006. Well-aligned open-ended carbon nanotube architectures: an approach for device assembly. Nano Letters 6(2): 243–247.

    Article  Google Scholar 

  120. Kordás, K., et al. 2007. Chip cooling with integrated carbon nanotube microfin architectures. Applied Physics Letters 90(12): 123105.

    Article  Google Scholar 

  121. Kim, M.J., et al. 2006. Efficient transfer of a VA-SWNT film by a flip-over technique. Journal of the American Chemical Society 128(29): 9312–9313.

    Article  Google Scholar 

  122. Sunden, E., J.K. Moon, C.P. Wong, W.P. King, and S. Graham. 2006. Microwave assisted patterning of vertically aligned carbon nanotubes onto polymer substrates. Journal of Vacuum Science & Technology B 24(4): 1947–1950.

    Article  Google Scholar 

  123. Hongjin, J., Z. Lingbo, M. Kyoung-sik, and C.P. Wong. 2007. Low temperature carbon nanotube film transfer via conductive polymer composites. Nanotechnology 18(12): 125203.

    Article  Google Scholar 

  124. Lin W and Wong CP (2010) Applications of carbon nanomaterials as electrical interconnects and thermal interface materials. In Nano-Bio-Electronic, Photonic and MEMS Packaging, eds Wong CP, Moon K-S, and Li Y. 87–138. Boston: Springer.

    Google Scholar 

  125. Semiconductor Industry Association (SIA). Assembly and Packaging. In International Technology Roadmap for Semiconductors, 2009 Edition. http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Assembly.pdf

  126. Tummala, R., C.P. Wong, and P.M. Raj. 2009. Nanopackaging research at Georgia Tech. IEEE Nanotechnology Magazine 3(4): 20–25.

    Article  Google Scholar 

  127. Ngo, Q., et al. 2007. Structural and electrical characterization of carbon nanofibers for interconnect via applications. IEEE Transactions on Nanotechnology 6(6): 688–695.

    Article  Google Scholar 

  128. Coiffic, J.C., et al. 2008. An application of carbon nanotubes for integrated circuit interconnects. 70370D-70370D-70310.

    Google Scholar 

  129. Li, H., C. Xu, N. Srivastava, and K. Banerjee. 2009. Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Transactions on Electron Devices 56(9): 1799–1821.

    Article  Google Scholar 

  130. Chae, J., X. Ho, J.A. Rogers, and K. Jain. 2008. Patterning of single walled carbon nanotubes using a low-fluence excimer laser photoablation process. Applied Physics Letters 92(17): 173115.

    Article  Google Scholar 

  131. Pribat, D., et al. 2008. Novel approach to align carbon nanotubes for planar type devices. 70370 N–70370 N-70377.

    Google Scholar 

  132. Shoji, S., T. Roders, Z. Sekkat, and S. Kawata. 2008. Light-induced accumulation of single-wall carbon nanotubes dispersed in aqueous solution. 70370O-70370O-70376.

    Google Scholar 

  133. Chhowalla, M., et al. 2001. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. Journal of Applied Physics 90(10): 5308–5317.

    Article  Google Scholar 

  134. Burke, P.J., Z. Yu, S. Li, and C. Rutherglen. 2005. Nanotube technology for microwave applications. In IEEE MTT-S International Microwave Symposium Digest, 2005, 4.

    Google Scholar 

  135. Moayed, N.N.A., U.A. Khan, M. Obol, S. Gupta, and M.N. Afsar (2007) Characterization of single- and multi-walled carbon nanotubes at microwave frequencies. In 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007, 1–4.

    Google Scholar 

  136. Plombon, J.J., K.P. O’Brien, F. Gstrein, V.M. Dubin, and Y. Jiao. 2007. High-frequency electrical properties of individual and bundled carbon nanotubes. Applied Physics Letters 90(6): 063106.

    Article  Google Scholar 

  137. Min, Z., H. Xiao, P.C.H. Chan, L. Qi, and Z.K. Tang. 2006. Radio-frequency transmission properties of carbon nanotubes in a field-effect transistor configuration. IEEE Electron Device Letters 27(8): 668–670.

    Article  Google Scholar 

  138. Madriz, F.R., et al. 2008. Measurements and circuit model of carbon nanofibers at microwave frequencies. In 2008 International Interconnect Technology Conference, 138–140.

    Google Scholar 

  139. Hermann, S., B. Pahl, R. Ecke, S.E. Schulz, and T. Gessner. 2010. Carbon nanotubes for nanoscale low temperature flip chip connections. Microelectronic Engineering 87(3): 438–442.

    Article  Google Scholar 

  140. Ikuo, S., et al. 2008. Carbon nanotube bumps for LSI interconnect. In 2008 58th Electronic Components and Technology Conference, 1390–1394.

    Google Scholar 

  141. Iwai, T., et al. 2005. Thermal and source bumps utilizing carbon nanotubes for flip-chip high power amplifiers. In IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest, 257–260.

    Google Scholar 

  142. Awano, V., T. Iwai, and V. Yuji. 2007. Carbon nanotube bumps for thermal and electric conduction in transistor. Fujitsu Scientific & Technical Journal 43(4): 508–515.

    Google Scholar 

  143. Nihei, M. 2012. CNT/Graphene Technologies for Advanced Interconnects and TSVs. In SEMATECH Symposium Taiwan.

    Google Scholar 

  144. Murali, R., Y. Yang, K. Brenner, T. Beck, and J.D. Meindl. 2009. Breakdown current density of graphene nanoribbons. Applied Physics Letters 94(24): 243114.

    Article  Google Scholar 

  145. Murali, R., K. Brenner, Y. Yang, T. Beck, and J.D. Meindl. 2009. Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Letters 30(6): 611–613.

    Article  Google Scholar 

  146. Kawabata, A., T. Murakami, M. Nihei, and N. Yokoyama. 2013. Growth of dense, vertical and horizontal graphene and its thermal properties. Japanese Journal of Applied Physics 52((4S)): 04CB06.

    Article  Google Scholar 

  147. Bae, S., et al. 2010. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 5(8): 574–578.

    Article  Google Scholar 

  148. Shen, J., Y. Zhu, K. Zhou, X. Yang, and C. Li. 2012. Tailored anisotropic magnetic conductive film assembled from graphene-encapsulated multifunctional magnetic composite microspheres. Journal of Materials Chemistry 22(2): 545–550.

    Article  Google Scholar 

  149. Jagannadham, K. 2011. Thermal conductivity of indium–graphene and indium-gallium–graphene composites. Journal of Electronic Materials 40(1): 25–34.

    Article  Google Scholar 

  150. Garimella, S.V., et al. 2008. Thermal challenges in next-generation electronic systems. IEEE Transactions on Components and Packaging Technologies 31(4): 801–815.

    Article  Google Scholar 

  151. Balandin, A.A. 2009. Chill out. IEEE Spectrum 46(10): 34–39.

    Article  Google Scholar 

  152. Meneghini, M., L.-R. Trevisanello, G. Meneghesso, and E. Zanoni. 2008. A review on the reliability of GaN-based LEDs. IEEE Transactions on Device and Materials Reliability 8(2): 323–331.

    Article  Google Scholar 

  153. Meneghesso, G., et al. 2008. Reliability of GaN high-electron-mobility transistors: state of the art and perspectives. IEEE Transactions on Device and Materials Reliability 8(2): 332–343.

    Article  Google Scholar 

  154. Christensen, A., and S. Graham. 2009. Thermal effects in packaging high power light emitting diode arrays. Applied Thermal Engineering 29(2): 364–371.

    Article  Google Scholar 

  155. Puttaswamy, K., and G.H. Loh. 2006. Thermal analysis of a 3D die-stacked high-performance microprocessor. In Proceedings of the 16th ACM Great Lakes Symposium on VLSI, (ACM), 19–24.

    Google Scholar 

  156. Sarvar, F., D.C. Whalley, and P.P. Conway. 2006. Thermal interface materials-a review of the state of the art. In 2006 1st Electronic Systemintegration Technology Conference, 1292–1302. IEEE.

    Google Scholar 

  157. Sarua, A., et al. 2006. Integrated micro-Raman/infrared thermography probe for monitoring of self-heating in AlGaN/GaN transistor structures. IEEE Transactions on Electron Devices 53(10): 2438–2447.

    Article  Google Scholar 

  158. Turin, V.O., and A.A. Balandin. 2006. Electrothermal simulation of the self-heating effects in GaN-based field-effect transistors. Journal of Applied Physics 100(5): 054501.

    Article  Google Scholar 

  159. Langer, G., J. Hartmann, and M. Reichling. 1997. Thermal conductivity of thin metallic films measured by photothermal profile analysis. Review of Scientific Instruments 68(3): 1510–1513.

    Article  Google Scholar 

  160. Chen, G., and P. Hui. 1999. Thermal conductivities of evaporated gold films on silicon and glass. Applied Physics Letters 74(20): 2942–2944.

    Article  Google Scholar 

  161. Nath, P., and K. Chopra. 1974. Thermal conductivity of copper films. Thin Solid Films 20(1): 53–62.

    Article  Google Scholar 

  162. Nika, D.L., A.I. Cocemasov, D.V. Crismari, and A.A. Balandin. 2013. Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires. Applied Physics Letters 102(21): 213109.

    Article  Google Scholar 

  163. Nika, D., et al. 2012. Suppression of phonon heat conduction in cross-section-modulated nanowires. Physical Review B 85(20): 205439.

    Article  Google Scholar 

  164. ———. 2011. Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering. Physical Review B 84(16): 165415.

    Article  Google Scholar 

  165. Martin, P., Z. Aksamija, E. Pop, and U. Ravaioli. 2009. Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Physical Review Letters 102(12): 125503.

    Article  Google Scholar 

  166. Hochbaum, A.I., et al. 2008. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175): 163–167.

    Article  Google Scholar 

  167. Li, D., et al. 2003. Thermal conductivity of individual silicon nanowires. Applied Physics Letters 83(14): 2934–2936.

    Article  Google Scholar 

  168. Liu, W., and M. Asheghi. 2006. Thermal conductivity measurements of ultra-thin single crystal silicon layers. Journal of Heat Transfer 128(1): 75–83.

    Article  Google Scholar 

  169. Zincenco, N., D. Nika, E. Pokatilov, and A. Balandin. 2007. Acoustic phonon engineering of thermal properties of silicon-based nanostructures. Journal of Physics: Conference Series, (IOP Publishing), 012086.

    Google Scholar 

  170. Yan, Z., G. Liu, J.M. Khan, and A.A. Balandin. 2012. Graphene quilts for thermal management of high-power GaN transistors. Nature Communications 3: 827.

    Article  Google Scholar 

  171. Reina, A., et al. 2008. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters 9(1): 30–35.

    Article  Google Scholar 

  172. Obraztsov, A.N. 2009. Chemical vapour deposition: making graphene on a large scale. Nature Nanotechnology 4(4): 212–213.

    Article  Google Scholar 

  173. Subrina, S., Kotchetkov, D., and Balandin, A.A. 2009 Graphene heat spreaders for thermal management of nanoelectronic circuits. arXiv preprint arXiv:0910.1883.

    Google Scholar 

  174. Kim, H., A.A. Abdala, and C.W. Macosko. 2010. Graphene/polymer nanocomposites. Macromolecules 43(16): 6515–6530.

    Article  Google Scholar 

  175. Li, X., et al. 2009. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932): 1312–1314.

    Article  Google Scholar 

  176. Varshney, V., S.S. Patnaik, A.K. Roy, G. Froudakis, and B.L. Farmer. 2010. Modeling of thermal transport in pillared-graphene architectures. ACS Nano 4(2): 1153–1161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxing Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lu, X. (2017). Carbon Nanotubes and Graphene for Microwave/RF Electronics Packaging. In: Kuang, K., Sturdivant, R. (eds) RF and Microwave Microelectronics Packaging II. Springer, Cham. https://doi.org/10.1007/978-3-319-51697-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51697-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51696-7

  • Online ISBN: 978-3-319-51697-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics