Skip to main content

Generation and Exploration of Architectural Form Using a Composite Cellular Automata

  • Conference paper
  • First Online:
Artificial Life and Computational Intelligence (ACALCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10142))

Abstract

In this paper, we introduce a composite Cellular Automata (CA) to explore digital morphogenesis in architecture. Consisting of multiple interleaved one dimensional CA, our model evolves the boundaries of spatial units in cross sectional diagrams. We investigate the efficacy of this approach by systematically varying initial conditions and transition rules. Simulation experiments show that the composite CA can generate aggregate spatial units to match the characteristics of specific spatial configurations, using a well-known architectural landmark as a benchmark. Significantly, spatial patterns emerge as a consequence of the evolution of the system, rather than from prescriptive design decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings. Construction. Oxford University Press, Oxford (1977)

    Google Scholar 

  2. Araghi, S.K., Stouffs, R.: Exploring cellular automata for high density residential building form generation. Autom. Constr. 49, 152–162 (2015)

    Article  Google Scholar 

  3. Bafna, S.: Space syntax a brief introduction to its logic and analytical techniques. Environ. Behav. 35(1), 17–29 (2003)

    Article  Google Scholar 

  4. Camazine, S.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  5. Chavoya, A., Duthen, Y.: A cell pattern generation model based on an extended artificial regulatory network. Biosystems 94(1), 95–101 (2008)

    Article  Google Scholar 

  6. Coates, P., Healy, N., Lamb, C., Voon, W.: The use of cellular automata to explore bottom up architectonic rules. Eurographics Association UK (1996)

    Google Scholar 

  7. De Garis, H.: Genetic programming artificial nervous systems artificial embryos and embryological electronics. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 117–123. Springer, Heidelberg (1991). doi:10.1007/BFb0029741

    Chapter  Google Scholar 

  8. Dorin, A., McCormack, J.: Self-assembling dynamical hierarchies. Artif. Life 8, 423–428 (2003)

    Google Scholar 

  9. Doursat, R.: The growing canvas of biological development: multiscale pattern generation on an expanding lattice of gene regulatory nets. In: Minai, A., Braha, D., Bar-Yam, Y. (eds.) Unifying Themes in Complex Systems, pp. 205–210. Springer, Heidelberg (2008)

    Google Scholar 

  10. Gardner, M.: The fantastic combinations of john conways new solitaire games. Mathematical Games (1970)

    Google Scholar 

  11. Government, V.S.: Better Apartments Draft Design Standards. Environment, Land, Water and Planning (2016). Draft version

    Google Scholar 

  12. Hensel, M., Menges, A.: Differentiation and performance: multi-performance architectures and modulated environments. Architect. Des. 76(2), 60–69 (2006)

    Google Scholar 

  13. Hensel, M., Menges, A., Weinstock, M.: Emergence: Morphogenetic Design Strategies. Wiley-Academy, Chichester (2004)

    Google Scholar 

  14. Herr, C.M., Kvan, T.: Adapting cellular automata to support the architectural design process. Autom. Constr. 16(1), 61–69 (2007)

    Article  Google Scholar 

  15. Hillier, B., Hanson, J.: The Social Logic of Space. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  16. Holland, J.H.: Adaptation in Natural, Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  17. Kondacs, A.: Biologically-inspired self-assembly of two-dimensional shapes using global-to-local compilation. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 633–638. Morgan Kaufmann Publishers Inc. (2003)

    Google Scholar 

  18. Kowaliw, T., Grogono, P., Kharma, N.: Bluenome: a novel developmental model of artificial morphogenesis. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 93–104. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24854-5_9

    Chapter  Google Scholar 

  19. Krawczyk, R.J.: Architectural interpretation of cellular automata. In: Generative Art Conference, Milano (2002)

    Google Scholar 

  20. Lynch, K.: Good City Form. MIT Press, Cambridge (1981)

    Google Scholar 

  21. Man, G.M.: The Quark, the Jaguar: Adventures in the Simple and the Complex (1994)

    Google Scholar 

  22. Mitchell, W.J.: Computer-Aided Architectural Design. Wiley, New York (1977)

    Google Scholar 

  23. The Office of the Victorian Government Architect. Better apartments - a discussion paper. Technical report, Department of Environment, Land, Water and Planning (2015)

    Google Scholar 

  24. Paperin, G., Green, D., Sadedin, S.: Dual-phase evolution in complex adaptive systems. J. R. Soc. Interface 8(58), 609–629 (2011)

    Article  Google Scholar 

  25. Sayama, H.: Self-protection and diversity in self-replicating cellular automata. Artif. Life 10(1), 83–98 (2004)

    Article  Google Scholar 

  26. Shalizi, C.R.: Methods, techniques of complex systems science: an overview. In: Deisboeck, T.S., Yasha Kresh, J. (eds.) Complex Systems Science in Biomedicine, pp. 33–114. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Steadman, P.: Architectural Morphology: An Introduction to the Geometry of Building Plans. Taylor & Francis, Milton Park (1983)

    Google Scholar 

  28. Stiny, G.: Introduction to shape and shape grammars. Environ. Plann. B 7(3), 343–351 (1980)

    Article  Google Scholar 

  29. Thompson, D.W., et al.: On Growth and Form. Cambridge University Press, Cambridge (1942)

    MATH  Google Scholar 

  30. Von Neumann, J., Burks, A.W., et al.: Theory of self-reproducing automata. IEEE Trans. Neural Netw. 5(1), 3–14 (1966)

    Google Scholar 

  31. Watson, J.D., et al.: Molecular biology of the gene. Molecular biology of the gene, 2nd edn. (1970)

    Google Scholar 

  32. Wolfram, S.: Universality and complexity in cellular automata. Phys. D: Nonlinear Phenom. 10(1), 1–35 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wolfram, S.: A New Kind of Science, vol. 5. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cruz, C., Kirley, M., Karakiewicz, J. (2017). Generation and Exploration of Architectural Form Using a Composite Cellular Automata. In: Wagner, M., Li, X., Hendtlass, T. (eds) Artificial Life and Computational Intelligence. ACALCI 2017. Lecture Notes in Computer Science(), vol 10142. Springer, Cham. https://doi.org/10.1007/978-3-319-51691-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51691-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51690-5

  • Online ISBN: 978-3-319-51691-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics