Skip to main content

A MOEA/D with Non-uniform Weight Vector Distribution Strategy for Solving the Unit Commitment Problem in Uncertain Environment

  • Conference paper
  • First Online:
Artificial Life and Computational Intelligence (ACALCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10142))

Abstract

In this paper, a multiobjective evolutionary algorithm based on decomposition (MOEA/D) based is proposed to solve the unit commitment (UC) problem in uncertain environment as a multi-objective optimization problem considering cost, emission, and reliability as the multiple objectives. The uncertainties occurring due to thermal generator outage and load forecast error are incorporated using expected energy not served (EENS) reliability index and EENS cost is used to reflect the reliability objective. Since, UC is a mixed-integer optimization problem, a hybrid strategy is integrated within the framework of decomposition-based MOEA such that genetic algorithm (GA) evolves the binary variables while differential evolution (DE) evolves the continuous variables. To enhance the performance of the presented algorithm, novel non-uniform weight vector distribution strategies are proposed. The effectiveness of the non-uniform weight vector distribution strategy is verified through stringent simulated results on different test systems.

This work was supported by the Ministry of Education under Grant R-263-000-B49-112 and Energy Market Authority of Singapore under Grant R-263-000-B14-279.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wood, A.J., Woolenberg, B.: Power Generation Operation and Control. Wiley, New York (1996)

    Google Scholar 

  2. Kazarlis, S.A., Bakirtzis, A.G., Petridis, V.: A genetic algorithm solution to the unit commitment problem. IEEE Trans. Power Syst. 11(1), 83–92 (1996)

    Article  Google Scholar 

  3. Datta, D.: Unit commitment problem with ramp rate constraint using a binary-real-coded genetic algorithm. Appl. Soft Comput. 13(9), 3873–3883 (2013)

    Article  Google Scholar 

  4. Yuan, X., Su, A., Nie, H., Yuan, Y., Wang, L.: Unit commitment problem using enhanced particle swarm optimization algorithm. Soft Comput. 15(1), 139–148 (2011)

    Article  Google Scholar 

  5. Datta, D., Dutta, S.: A binary-real-coded differential evolution for unit commitment problem. Int. J. Electr. Power Energy Syst. 42(1), 517–524 (2012)

    Article  Google Scholar 

  6. Trivedi, A., Srinivasan, D., Biswas, S., Reindl, T.: Hybridizing genetic algorithm with differential evolution for solving the unit commitment scheduling problem. Swarm Evol. Comput. 23, 50–64 (2015)

    Article  Google Scholar 

  7. Trivedi, A., Srinivasan, D., Biswas, S., Reindl, T.: A genetic algorithm differential evolution based hybrid framework: case study on unit commitment scheduling problem. Inf. Sci. 354, 275–300 (2016)

    Article  Google Scholar 

  8. Trivedi, A., Srinivasan, D., Sharma, D., Singh, C.: Evolutionary multi-objective day-ahead thermal generation scheduling in uncertain environment. IEEE Trans. Power Syst. 28(2), 1345–1354 (2013)

    Article  Google Scholar 

  9. Trivedi, A., Pindoriya, N.M., Srinivasan, D., Sharma, D.: Improved multi-objective evolutionary algorithm for day-ahead thermal generation scheduling. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 2170–2177, June 2011

    Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. Li, Y.F., Pedroni, N., Zio, E.: A memetic evolutionary multi-objective optimization method for environmental power unit commitment. IEEE Trans. Power Syst. 28(3), 2660–2669 (2013)

    Article  Google Scholar 

  12. Trivedi, A., Srinivasan, D., Pal, K., Saha, C., Reindl, T.: Enhanced multiobjective evolutionary algorithm based on decomposition for solving the unit commitment problem. IEEE Trans. Ind. Inform. 11(6), 1346–1357 (2015)

    Article  Google Scholar 

  13. Chandrasekaran, K., Hemamalini, S., Simon, S.P., Padhy, N.P.: Thermal unit commitment using binary/real coded artificial bee colony algorithm. Electr. Power Syst. Res. 84(1), 109–119 (2012)

    Article  Google Scholar 

  14. Chandrasekaran, K., Simon, S.P.: Multi-objective scheduling problem: hybrid approach using fuzzy assisted cuckoo search algorithm. Swarm Evol. Comput. 5, 1–16 (2012)

    Article  Google Scholar 

  15. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  16. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  17. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multi-objective evolutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. PP(99), 1 (2016)

    Article  Google Scholar 

  18. Ortega-Vazquez, M.A., Kirschen, D.S.: Optimizing the spinning reserve requirements using a cost/benefit analysis. IEEE Trans. Power Syst. 22(1), 24–33 (2007)

    Article  Google Scholar 

  19. Billinton, R., Allan, R.N.: Reliability Evaluation of Power Systems. Plenum, London (1996)

    Book  MATH  Google Scholar 

  20. Jiang, S., Ong, Y.S., Zhang, J., Feng, L.: Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 44(12), 2391–2404 (2014)

    Article  Google Scholar 

  21. Giagkiozis, I., Purshouse, R., Fleming, P.: Generalized decomposition and cross entropy methods for many-objective optimization. Inf. Sci. 282, 363–387 (2014)

    Article  MathSciNet  Google Scholar 

  22. Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., Wu, J.: MOEA/D with adaptive weight adjustment. Evol. Comput. 22(2), 231–264 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Trivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Trivedi, A., Srinivasan, D., Pal, K., Reindl, T. (2017). A MOEA/D with Non-uniform Weight Vector Distribution Strategy for Solving the Unit Commitment Problem in Uncertain Environment. In: Wagner, M., Li, X., Hendtlass, T. (eds) Artificial Life and Computational Intelligence. ACALCI 2017. Lecture Notes in Computer Science(), vol 10142. Springer, Cham. https://doi.org/10.1007/978-3-319-51691-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51691-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51690-5

  • Online ISBN: 978-3-319-51691-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics