Skip to main content

Demister Design

  • Chapter
  • First Online:
  • 1754 Accesses

Abstract

In this chapter, demister is covered.

The allowable flow velocity in vertical and horizontal demisters is determined.

The special features for demisters at high pressures are also covered.

Very small droplets are separated by a droplet enlargement.

The falling velocity of droplets in gas is determined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. F.L. Evans, jr. Separators and Accumulators, in Equipment Design Handbook, Vol. 2. (Gulf Publishing Company, Houston 1974), ISBN 0-87201-267-0

    Google Scholar 

  2. R. Marr, F. Moser, Die Auslegung von stehenden Gas-Flüssig-Abscheidern. Verfahrenstechnik 9(8), 379 ff. (1975)

    Google Scholar 

  3. R. Marr, F. Moser, G. Husung, Berechnung liegender Gas-Flüssig-Abscheider. Verfahrenstechnik 10(1), 34 ff. (1976)

    Google Scholar 

  4. A.D. Scheimann, Size Vapor-Liquid Separators. Hydrocarbon Processing 42(10), 165/168 (1963)

    Google Scholar 

  5. A.D. Scheimann, Horizontal Vapor-Liquid Separators. Hydrocarbon Processing 43(5), 155/160 (1964)

    Google Scholar 

  6. J.M. Campbell Vapor-Liquid Separation Equipment, in Gas Conditioning and Processing, Vol.1, 122 ff. (Campbell Petroleum Series, Norman, Oklahoma, 1976)

    Google Scholar 

  7. M. Nitsche, Abluft-Fibel. (Springer Verlag, Berlin 2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nitsche .

Appendix: Calculation of the Falling Velocity of Droplets in Air or Gas

Appendix: Calculation of the Falling Velocity of Droplets in Air or Gas

First, the Archimedes number Ar, according to Formulas 11.11 and 11.11a, is calculated and therefore by using Eqs. (11.12a) and (11.12c) the Reynolds number Re is determined.

The falling velocity for the different Reynolds number regions is calculated with Formula 11.13a to 11.13c. Alternatively, the falling velocity can be calculated using the Eq. 11.13d for Re >1.

  1. 1.

    Archimedes number Ar

    $$ Ar = \frac{{d^{3} \cdot g \cdot \rho_{\text{G}} (\rho_{\text{Fl}} - \rho_{\text{G}} )}}{{\eta_{\text{G}}^{2} }} $$
    (11.11)
    $$ Ar = \frac{{Re^{2} \cdot (\rho_{\text{Fl}} - \rho_{\text{G}} )}}{{Fr \cdot \rho_{\text{G}} }} $$
    (11.11a)

    Fr = Froude number

  2. 2.

    Reynolds number Re

    $$ Re = \frac{{w_{\text{Fall}} \cdot d{ \cdot }\rho_{\text{G}} }}{{\eta_{\text{G}} }} $$
    (11.12)

    Because the falling velocity is unknown the Reynolds number has to be determined using the Archimedes number. The following relationships are valid for different regions:

    $$ Ar < 3.6\quad Re = \frac{Ar}{18} $$
    (11.12a)
    $$ 3.6 < Ar < 83000\quad Re = \left( {\frac{Ar}{13.9}} \right)^{1/1.4} $$
    (11.12b)
    $$ Ar > 83000\quad Re = 1.73 * \sqrt {Ar} $$
    (11.12c)
  3. 3.

    Falling velocity w Fall

    $$ w_{\text{Fall}} = \frac{{Re \cdot \eta_{\text{G}} }}{{d \cdot \rho_{\text{G}} }}\quad ({\text{m}}/{\text{s}}) $$
    (11.13)
  4. 3.1

    For the region Re < 0.2 Stoke’s Law is valid

    $$ w_{\text{Fall}} = \frac{{d^{2} (\rho_{Fl} - \rho_{G} ) \cdot g}}{{18 \cdot \eta_{G} }}\quad ({\text{m}}/{\text{s}}) $$
    (11.13a)
  5. 3.2.

    In the region Re = 500 to Re = 150,000 the relationships of Newton are valid

    $$ w_{\text{Fall}} = 5.48 \cdot \sqrt {\frac{{d \cdot (\rho_{\text{Fl}} - \rho_{\text{G}} )}}{{\rho_{\text{G}} }}} \quad ({\text{m}}/{\text{s}}) $$
    (11.13b)
  6. 3.3.

    In the intermediate region 0.2 < Re < 500 the following equation is valid

    $$ \begin{aligned} w_{\text{Fall}} & = \sqrt {\frac{4}{3}.\frac{d}{c}.\frac{{g.(\rho_{Fl} - \rho_{G} )}}{{\rho_{\text{G}} }}} \quad ({\text{m}}/{\text{s}}) \\ C & = 18.5/Re^{0.6} \\ \end{aligned} $$
    (11.13c)
  7. 3.4.

    Alternatively, for Re > 1

    $$ w_{\text{Fall}} = \frac{{0.153 \cdot g^{0.71} \cdot d^{1.143} \cdot (\rho_{\text{fl}} - \rho_{\text{G}} )^{0.714} }}{{\rho_{\text{G}}^{0.286} \cdot \eta^{0.429} }}\quad ({\text{m}}/{\text{s}}) $$
    (11.13d)
  • d = droplet diameter (m)

  • g = acceleration of gravity (9.81 m2/s)

  • η G = gas viscosity (mPa)

  • ϱ G = gas density (kg/m3)

  • ϱ G = liquid density (kg/m3)

Example 1

\( \varvec{d} = {\mathbf{0}}.{\mathbf{1}}\,{\mathbf{mm}}\quad\varvec{\rho}_{{\mathbf{G}}} = {\mathbf{1}}.{\mathbf{2}}\,{\mathbf{kg}}/{\mathbf{m}}^{{\mathbf{3}}} \quad\varvec{\eta}_{{\mathbf{G}}} = {\mathbf{0}}.{\mathbf{015}}\,{\mathbf{mPa}}\quad\varvec{\rho}_{{{\mathbf{Fl}}}} = {\mathbf{1}}.{\mathbf{000}}\,{\mathbf{kg}}/{\mathbf{m}}^{{\mathbf{3}}} \)

Checking of the falling velocity using Eq. (11.13c):

$$ \begin{aligned} w_{\text{Fall}} & = \sqrt {\frac{4}{3} \cdot \frac{{0.1 \cdot 10^{ - 3} }}{10.48} \cdot \frac{9.81 \cdot (1000 - 1.2)}{1.2}} = 0.32\,{\text{m}}/{\text{s}} \\ C & = 18.5/2.575^{0.6} = 10.48 \\ \end{aligned} $$
$$ \begin{aligned} Ar & = \frac{{(0.6 \cdot 10^{ - 3} )^{3} \cdot 9.81 \cdot 1.2(1000 - 1.2)}}{{(15 \cdot 10^{ - 6} )^{2} }} = 52.26 \\ Re & = \left( {\frac{52.26}{13.9}} \right)^{1/14} = 2.575 \\ w_{\text{Fall}} & = \frac{{2.575 \cdot 15 \cdot 10^{ - 6} }}{{0.1 \cdot 10^{ - 3} \cdot 1.2}} = 0.32\,{\text{m}}/{\text{s}} \\ \end{aligned} $$

Example 2: Data as in Example 1, but ρ G = 0.1 kg/m3

$$ Ar = 4. 3 5 9\quad Re = 0. 4 3 6 $$
$$ w_{\text{Fall}} = \frac{{0.436 \cdot 15 \cdot 10^{ - 6} }}{{0.1 \cdot 10^{ - 3} \cdot 0.1}} = 0.65\,{\text{m}}/{\text{s}} $$

Example 3: Data as in Example 1, but ρ G = 10 kg/m3

$$ Ar = 4 3 1. 6\quad Re = 1 1. 6 4 $$
$$ w_{\text{Fall}} = \frac{{11.64 \cdot 15 \cdot 10^{ - 6} }}{{0.1 \cdot 10^{ - 3} \cdot 10}} = 0.17\,{\text{m}}/{\text{s}} $$

Conclusion

Falling velocity increases with decreasing gas density (in a vacuum)!

Example 4: Check of Example 1 using Eq. (11.13d)

$$ w_{\text{Fall}} = \frac{{0.153 * 9.81^{0.71} * 0.0001^{1.143} * (1000 - 1.2)^{0.714} }}{{1.2^{0.286} * (15 * 10^{ - 6} )^{0.429} }} $$
$$ w_{\text{Fall}} = 0.32\,{\text{m/s}} $$

Example 5: Check of Example 2 using Eq. (11.13c)

$$ \begin{aligned} w_{\text{Fall}} & = \sqrt {\frac{4}{3} \cdot \frac{0.1 \cdot 10^{-3} }{30.44} \cdot \frac{9.81 \cdot (1000 - 0.1)}{0.1}} = 0.65\,{\text{m}}/{\text{s}} \\ c & = 18.5/0.436^{0.6} = 30.44 \\ \end{aligned} $$

Example 6: Data as in Example 1, but d = 2 mm

$$ \begin{aligned} Ar & = \frac{{(2 \cdot 10^{ - 3} )^{3} \cdot 9.81 \cdot 1.2(1000 - 1.2)}}{{(15 \cdot 10^{ - 6} )^{2} }} = 418,058 \\ Re & = 1.73 \cdot \sqrt {418058} = 1118.6 \\ w_{\text{Fall}} & = 1118.6 \cdot \frac{{15 \cdot 10^{ - 6} }}{{2 \cdot 10^{ - 3} \cdot 1.2}} = 7\,{\text{m}}/{\text{s}} \\ \end{aligned} $$

Check of the falling velocity using Eq. (11.13b):

$$ w_{\text{Fall}} = 5.48 \cdot \sqrt {\frac{0.002 \cdot (1000 - 1.2)}{1.2}} = 7\,{\text{m}}/{\text{s}} $$

Check of the Archimedes number using Eq. (11.11a):

Fr = Froude number

$$ \begin{aligned} Fr & = \frac{{w^{2} }}{d \cdot g} = \frac{{7^{2} }}{0.002 \cdot 9.81} = 2497.4 \\ Ar & = \frac{{1118.6^{2} \cdot (1000 - 1.2)}}{2497.4 \cdot 1.2} = 417013 \\ \end{aligned} $$
  • Results tables

See Tables 11.2 and 11.3; Fig. 11.11.

Table 11.2 ρ G = 1.2 kg/m3 ρ Fl = 995 kg/m3 η G = 0.018 mPa
Table 11.3 ρ G = 0.1 kg/m3 ρ Fl = 995 kg/m3 η G = 0.018 mPa
Fig. 11.11
figure 11

Falling velocities of water droplets in air rat different gas densities

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nitsche, M., Gbadamosi, R. (2017). Demister Design. In: Practical Column Design Guide. Springer, Cham. https://doi.org/10.1007/978-3-319-51688-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51688-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51687-5

  • Online ISBN: 978-3-319-51688-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics