Skip to main content
  • 518 Accesses

Abstract

To transfer the image-based multilevel biomechanical modeling approach described in the previous chapters into a diagnostic tool for assessing hip fracture risk, the computer codes were automated so that user intervention is not required. Short-term precision was studied and factors affecting short-term precision were investigated. The ability of the biomechanical tool in discriminating hip fractures from controls was examined using clinical cohorts extracted from the Manitoba Bone Mineral Density Database (MBMDD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Kanis, A. Oden, O. Johnell, et al., The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos. Int. 18, 1033–1046 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Y. Luo, A biomechanical sorting of clinical risk factors affecting osteoporotic hip fracture. Osteoporos. Int. 27, 423–439 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. K.G. Faulkner, W.K. Wacker, H.S. Barden, C. Simonelli, S. Burke, P.K. Ragi et al., Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos. Int. 17, 593–599 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. Y. Luo, Z. Ferdous, W.D. Leslie, Precision study of DXA-based patient-specific finite element modeling for assessing hip fracture risk. Int. J. Numer. Methods Biomed. Eng. 29, 615–629 (2013)

    Article  Google Scholar 

  5. A.L. Boskey, T.M. Wright, R.D. Blank, Collagen and bone strength. J. Bone Miner. Res. 14, 330–335 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. A.L. Boskey, R. Coleman, Aging and bone. J. Dent. Res. 89, 1333–1348 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. B. Helgason, E. Perilli et al., Mathematical relationships between bone density and mechanical properties: a literature review. Clin. Biomech. 23, 135–146 (2008)

    Article  Google Scholar 

  8. L. Yang, L. Palermo, D.M. Black, R. Eastell, Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the study of osteoporotic fractures. J. Bone Miner. Res. 29, 2594–2600 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  9. A.L. Kozyrskyj, C.A. Mustard, Validation of an electronic, population-based prescription database. Ann. Pharmacother. 32, 1152–1157 (1998)

    Article  CAS  PubMed  Google Scholar 

  10. N.P. Roos, Establishing a population data-based policy unit. Med. Care 37, JS15–JS26 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. W.D. Leslie, C. Metge, Establishing a regional bone density program: lessons from the Manitoba experience. J. Clin. Densitom. 6, 275–282 (2003)

    Article  PubMed  Google Scholar 

  12. W.D. Leslie, L. MacWilliam, L. Lix, P. Caetano, G.S. Finlayson, A population-based study of osteoporosis testing and treatment following introduction of a new bone densitometry service. Osteoporos. Int. 16, 773–782 (2005)

    Article  PubMed  Google Scholar 

  13. W.D. Leslie, P.A. Caetano, L.R. MacWilliam, G.S. Finlayson, Construction and validation of a population-based bone densitometry database. J. Clin. Densitom. 8, 25–30 (2005)

    Article  PubMed  Google Scholar 

  14. W.D. Leslie, P.S. Pahlavan, J.F. Tsang, L.M. Lix, Prediction of hip and other osteoporotic fractures from hip geometry in a large clinical cohort. Osteoporos. Int. 20, 1767–1774 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. D. Hans, A. Andrew, M.-A. Krieg, W.D. Leslie, Bone micro-architecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J. Bone Miner. Res. 26, 2762–2769 (2011)

    Article  PubMed  Google Scholar 

  16. B. Rabier, A. Heraud, C. Grand-Lenoir et al., A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone 46, 176–181 (2010)

    Article  PubMed  Google Scholar 

  17. J.A. Kanis, O. Johnell, A. Oden, H. Johansson, C. De Laet et al., Smoking and fracture risk: a meta-analysis. Osteoporos. Int. 16, 155–162 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. C.C. Gluer, G. Blake, Y. Lu, B.A. Blunt, M. Jergas, H.K. Genant, Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos. Int. 5, 262–270 (1995)

    Article  CAS  PubMed  Google Scholar 

  19. International Society of Clinical Densitometry, Precision assessment & calculator FAQs (2016). http://www.iscd.org/resources/faqs/precision-assessment/

  20. W.D. Leslie, A. Moayyeri, Minimum sample size requirements for bone density precision assessment produce inconsistency in clinical monitoring. Osteoporos. Int. 17, 1673–1680 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. S. Lekamwasam, R.S.J. Lenora, Effect of leg rotation on hip bone mineral density measurements. J. Clin. Densitom. 6, 331–336 (2003)

    Article  PubMed  Google Scholar 

  22. T. Famcett, An introduction to roc analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

  23. J.A. Hanley, B.J. McNeil, The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)

    Article  CAS  PubMed  Google Scholar 

  24. Centers for Disease Control and Prevention (CDC), Third National Health and Nutrition Examination Survey (NHANES III) (2016), http://www.cdc.gov/nchs/nhanes/nhanes3/data_files.htm

  25. W.D. Leslie, L.M. Lix, H. Johansson, A. Oden, E. McCloskey, J.A. Kanis, Independent clinical validation of a Canadian FRAX tool: fracture prediction and model calibration. J. Bone Miner. Res. 25, 2350–2358 (2010)

    Article  PubMed  Google Scholar 

  26. L.A. Fraser, L. Langsetmo, C. Berger, G. Ioannidis, D. Goltzman, J.D. Adachi et al., Fracture prediction and calibration of a Canadian FRAX(R) tool: a population-based report from CaMos. Osteoporos. Int. 22, 829–837 (2011)

    Article  PubMed  Google Scholar 

  27. K.E. Naylor, E.V. McCloskey, R. Eastell, L. Yang, Use of DXA-based finite element analysis of the proximal femur in a longitudinal study of hip fracture. J. Bone Miner. Res. 28, 1014–1021 (2013)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Luo, Y. (2017). Preliminary Clinical Studies. In: Image-Based Multilevel Biomechanical Modeling for Fall-Induced Hip Fracture. Springer, Cham. https://doi.org/10.1007/978-3-319-51671-4_10

Download citation

Publish with us

Policies and ethics