Skip to main content

Human Auditory Neuroscience and the Cocktail Party Problem

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 60))

Abstract

Experimental neuroscience using human subjects, to investigate how the auditory system solves the cocktail party problem, is a young and active field. The use of traditional neurophysiological methods is very tightly constrained in human subjects, but whole-brain monitoring techniques are considerably more advanced for humans than for animals. These latter methods in particular allow routine recording of neural activity from humans while they perform complex auditory tasks that would be very difficult for animals to learn. The findings reviewed in this chapter cover investigations obtained with a variety of experimental methodologies, including electroencephalography, magnetoencephalography, electrocorticography, and functional magnetic resonance imaging. Topics covered in detail include investigations in humans of the neural basis of spatial hearing, auditory stream segregation of simple sounds, auditory stream segregation of speech, and the neural role of attention. A key conceptual advance noted is a change of interpretational focus from the specific notion of attention-based neural gain, to the general role played by attention in neural auditory scene analysis and sound segregation. Similarly, investigations have gradually changed their emphasis from explanations of how auditory representations remain faithful to the acoustics of the stimulus, to how neural processing transforms them into new representations corresponding to the percept of an auditory scene. An additional important methodological advance has been the successful transfer of linear systems theory analysis techniques commonly used in single-unit recordings to whole-brain noninvasive recordings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahissar, E., Nagarajan, S., Ahissar, M., Protopapas, A., et al. (2001). Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proceedings of the National Academy of Sciences of the USA, 98(23), 13367–13372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahveninen, J., Hamalainen, M., Jaaskelainen, I. P., Ahlfors, S. P., et al. (2011). Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise. Proceedings of the National Academy of Sciences of the USA, 108(10), 4182–4187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahveninen, J., Kopco, N., & Jaaskelainen, I. P. (2014). Psychophysics and neuronal bases of sound localization in humans. Hearing Research, 307, 86–97.

    Article  PubMed  Google Scholar 

  • Akram, S., Englitz, B., Elhilali, M., Simon, J. Z., & Shamma, S. A. (2014). Investigating the neural correlates of a streaming percept in an informational-masking paradigm. PLoS ONE, 9(12), e114427.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alain, C., Arnott, S. R., & Picton, T. W. (2001). Bottom-up and top-down influences on auditory scene analysis: Evidence from event-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance, 27(5), 1072–1089.

    CAS  PubMed  Google Scholar 

  • Alain, C., Reinke, K., He, Y., Wang, C., & Lobaugh, N. (2005). Hearing two things at once: Neurophysiological indices of speech segregation and identification. Journal of Cognitive Neuroscience, 17(5), 811–818.

    Article  PubMed  Google Scholar 

  • Bidet-Caulet, A., Fischer, C., Besle, J., Aguera, P. E., et al. (2007). Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex. The Journal of Neuroscience, 27(35), 9252–9261.

    Article  CAS  PubMed  Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Briley, P. M., Kitterick, P. T., & Summerfield, A. Q. (2013). Evidence for opponent process analysis of sound source location in humans. Journal of the Association for Research in Otolaryngology, 14(1), 83–101.

    Article  PubMed  Google Scholar 

  • Briley, P. M., Goman, A. M., & Summerfield, A. Q. (2016). Physiological evidence for a midline spatial channel in human auditory cortex. Journal of the Association for Research in Otolaryngology, 17(4), 331–340.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brungart, D. S., Simpson, B. D., Ericson, M. A., & Scott, K. R. (2001). Informational and energetic masking effects in the perception of multiple simultaneous talkers. The Journal of the Acoustical Society of America, 110(5 Pt 1), 2527–2538.

    Article  CAS  PubMed  Google Scholar 

  • Chait, M., Poeppel, D., & Simon, J. Z. (2006). Neural response correlates of detection of monaurally and binaurally created pitches in humans. Cerebral Cortex, 16(6), 835–848.

    Article  PubMed  Google Scholar 

  • Chait, M., de Cheveigne, A., Poeppel, D., & Simon, J. Z. (2010). Neural dynamics of attending and ignoring in human auditory cortex. Neuropsychologia, 48(11), 3262–3271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with 2 Ears. The Journal of the Acoustical Society of America, 25(5), 975–979.

    Article  Google Scholar 

  • Cramer, E. M., & Huggins, W. H. (1958). Creation of pitch through binaural Interaction. The Journal of the Acoustical Society of America, 30(5), 413–417.

    Article  Google Scholar 

  • Cusack, R. (2005). The intraparietal sulcus and perceptual organization. Journal of Cognitive Neuroscience, 17(4), 641–651.

    Article  PubMed  Google Scholar 

  • de Cheveigne, A. (2003). Time-domain auditory processing of speech. Journal of Phonetics, 31(3–4), 547–561.

    Article  Google Scholar 

  • Deike, S., Gaschler-Markefski, B., Brechmann, A., & Scheich, H. (2004). Auditory stream segregation relying on timbre involves left auditory cortex. NeuroReport, 15(9), 1511–1514.

    Article  PubMed  Google Scholar 

  • Deike, S., Scheich, H., & Brechmann, A. (2010). Active stream segregation specifically involves the left human auditory cortex. Hearing Research, 265(1–2), 30–37.

    Article  PubMed  Google Scholar 

  • Depireux, D. A., Simon, J. Z., Klein, D. J., & Shamma, S. A. (2001). Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. Journal of Neurophysiology, 85(3), 1220–1234.

    CAS  PubMed  Google Scholar 

  • Dijkstra, K. V., Brunner, P., Gunduz, A., Coon, W., et al. (2015). Identifying the attended speaker using electrocorticographic (ECoG) signals. Brain-Computer Interfaces, 2(4), 161–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Liberto, G. M., O’Sullivan, J. A., & Lalor, E. C. (2015). Low-frequency cortical entrainment to speech reflects phoneme-level processing. Current Biology, 25(19), 2457–2465.

    Article  PubMed  Google Scholar 

  • Ding, N., & Simon, J. Z. (2012a). Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. Journal of Neurophysiology, 107(1), 78–89.

    Article  PubMed  Google Scholar 

  • Ding, N., & Simon, J. Z. (2012b). Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences of the USA, 109(29), 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, N., & Simon, J. Z. (2013). Adaptive temporal encoding leads to a background-insensitive cortical representation of speech. The Journal of Neuroscience, 33(13), 5728–5735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, N., Chatterjee, M., & Simon, J. Z. (2014). Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure. NeuroImage, 88, 41–46.

    Article  PubMed  Google Scholar 

  • Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158–164.

    Article  CAS  PubMed  Google Scholar 

  • Dingle, R. N., Hall, S. E., & Phillips, D. P. (2010). A midline azimuthal channel in human spatial hearing. Hearing Research, 268(1–2), 67–74.

    Article  PubMed  Google Scholar 

  • Dingle, R. N., Hall, S. E., & Phillips, D. P. (2012). The three-channel model of sound localization mechanisms: Interaural level differences. The Journal of the Acoustical Society of America, 131(5), 4023–4029.

    Article  PubMed  Google Scholar 

  • Dykstra, A. R., Halgren, E., Thesen, T., Carlson, C. E., et al. (2011). Widespread brain areas engaged during a classical auditory streaming task revealed by intracranial EEG. Frontiers in Human Neuroscience, 5, 74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elhilali, M., Xiang, J., Shamma, S. A., & Simon, J. Z. (2009a). Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene. PLoS Biology, 7(6), e1000129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elhilali, M., Ma, L., Micheyl, C., Oxenham, A. J., & Shamma, S. A. (2009b). Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron, 61(2), 317–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutschalk, A., & Dykstra, A. R. (2014). Functional imaging of auditory scene analysis. Hearing Research, 307, 98–110.

    Article  PubMed  Google Scholar 

  • Gutschalk, A., Micheyl, C., Melcher, J. R., Rupp, A., et al. (2005). Neuromagnetic correlates of streaming in human auditory cortex. The Journal of Neuroscience, 25(22), 5382–5388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutschalk, A., Oxenham, A. J., Micheyl, C., Wilson, E. C., & Melcher, J. R. (2007). Human cortical activity during streaming without spectral cues suggests a general neural substrate for auditory stream segregation. The Journal of Neuroscience, 27(48), 13074–13081.

    Article  CAS  PubMed  Google Scholar 

  • Gutschalk, A., Micheyl, C., & Oxenham, A. J. (2008). Neural correlates of auditory perceptual awareness under informational masking. PLoS Biology, 6(6), e138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hambrook, D. A., & Tata, M. S. (2014). Theta-band phase tracking in the two-talker problem. Brain and Language, 135, 52–56.

    Article  PubMed  Google Scholar 

  • Hawley, M. L., Litovsky, R. Y., & Culling, J. F. (2004). The benefit of binaural hearing in a cocktail party: Effect of location and type of interferer. The Journal of the Acoustical Society of America, 115(2), 833–843.

    Article  PubMed  Google Scholar 

  • Hill, K. T., & Miller, L. M. (2010). Auditory attentional control and selection during cocktail party listening. Cerebral Cortex, 20(3), 583–590.

    Article  PubMed  Google Scholar 

  • Hill, K. T., Bishop, C. W., & Miller, L. M. (2012). Auditory grouping mechanisms reflect a sound’s relative position in a sequence. Frontiers in Human Neuroscience, 6, 158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. Science, 182(4108), 177–180.

    Article  CAS  PubMed  Google Scholar 

  • Horton, C., D’Zmura, M., & Srinivasan, R. (2013). Suppression of competing speech through entrainment of cortical oscillations. Journal of Neurophysiology, 109(12), 3082–3093.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hugdahl, K. (2005). Symmetry and asymmetry in the human brain. European Review, 13(Suppl. S2), 119–133.

    Google Scholar 

  • Jeffress, L. A. (1948). A place theory of sound localization. Journal of Comparative and Physiological Psychology, 41(1), 35–39.

    Article  CAS  PubMed  Google Scholar 

  • Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the USA, 97(22), 11793–11799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayser, S. J., Ince, R. A., Gross, J., & Kayser, C. (2015). Irregular speech rate dissociates auditory cortical entrainment, evoked responses, and frontal alpha. The Journal of Neuroscience, 35(44), 14691–14701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerlin, J. R., Shahin, A. J., & Miller, L. M. (2010). Attentional gain control of ongoing cortical speech representations in a “cocktail party”. The Journal of Neuroscience, 30(2), 620–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidd, G., Jr., Mason, C. R., & Richards, V. M. (2003). Multiple bursts, multiple looks, and stream coherence in the release from informational masking. The Journal of the Acoustical Society of America, 114(5), 2835–2845.

    Article  PubMed  Google Scholar 

  • Kulesza, R. J., Jr. (2007). Cytoarchitecture of the human superior olivary complex: Medial and lateral superior olive. Hearing Research, 225(1–2), 80–90.

    Article  PubMed  Google Scholar 

  • Lalor, E. C., & Foxe, J. J. (2010). Neural responses to uninterrupted natural speech can be extracted with precise temporal resolution. European Journal of Neuroscience, 31(1), 189–193.

    Article  Google Scholar 

  • Lee, A. K., Larson, E., Maddox, R. K., & Shinn-Cunningham, B. G. (2014). Using neuroimaging to understand the cortical mechanisms of auditory selective attention. Hearing Research, 307, 111–120.

    Article  PubMed  Google Scholar 

  • Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54(6), 1001–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutkenhoner, B., & Steinstrater, O. (1998). High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiology and Neuro-Otology, 3(2–3), 191–213.

    Article  CAS  PubMed  Google Scholar 

  • Maddox, R. K., Billimoria, C. P., Perrone, B. P., Shinn-Cunningham, B. G., & Sen, K. (2012). Competing sound sources reveal spatial effects in cortical processing. PLoS Biology, 10(5), e1001319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magezi, D. A., & Krumbholz, K. (2010). Evidence for opponent-channel coding of interaural time differences in human auditory cortex. Journal of Neurophysiology, 104(4), 1997–2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Makela, J. P., Hamalainen, M., Hari, R., & McEvoy, L. (1994). Whole-head mapping of middle-latency auditory evoked magnetic fields. Electroencephalography and Clinical Neurophysiology, 92(5), 414–421.

    Article  CAS  PubMed  Google Scholar 

  • McAlpine, D. (2005). Creating a sense of auditory space. Journal of Physiology, 566(Pt 1), 21–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin, S. A., Higgins, N. C., & Stecker, G. C. (2016). Tuning to binaural cues in human auditory cortex. Journal of the Association for Research in Otolaryngology, 17(1), 37–53.

    Article  PubMed  Google Scholar 

  • Mesgarani, N., & Chang, E. F. (2012). Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485(7397), 233–236.

    Article  CAS  PubMed  Google Scholar 

  • Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343(6174), 1006–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middlebrooks, J. C., & Bremen, P. (2013). Spatial stream segregation by auditory cortical neurons. The Journal of Neuroscience, 33(27), 10986–11001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naatanen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544–2590.

    Article  CAS  PubMed  Google Scholar 

  • Nakai, T., Kato, C., & Matsuo, K. (2005). An FMRI study to investigate auditory attention: A model of the cocktail party phenomenon. Magnetic Resonance in Medical Sciences, 4(2), 75–82.

    Article  PubMed  Google Scholar 

  • O’Sullivan, J. A., Shamma, S. A., & Lalor, E. C. (2015a). Evidence for neural computations of temporal coherence in an auditory scene and their enhancement during active listening. The Journal of Neuroscience, 35(18), 7256–7263.

    Article  PubMed  Google Scholar 

  • O’Sullivan, J. A., Power, A. J., Mesgarani, N., Rajaram, S., et al. (2015b). Attentional selection in a cocktail party environment can be decoded from single-trial EEG. Cerebral Cortex, 25(7), 1697–1706.

    Article  PubMed  Google Scholar 

  • Pasley, B. N., David, S. V., Mesgarani, N., Flinker, A., et al. (2012). Reconstructing speech from human auditory cortex. PLoS Biology, 10(1), e1001251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press.

    Google Scholar 

  • Peelle, J. E., Gross, J., & Davis, M. H. (2013). Phase-locked responses to speech in human auditory cortex are enhanced during comprehension. Cerebral Cortex, 23(6), 1378–1387.

    Article  PubMed  Google Scholar 

  • Power, A. J., Foxe, J. J., Forde, E. J., Reilly, R. B., & Lalor, E. C. (2012). At what time is the cocktail party? A late locus of selective attention to natural speech. European Journal of Neuroscience, 35(9), 1497–1503.

    Article  Google Scholar 

  • Ross, B., Tremblay, K. L., & Picton, T. W. (2007a). Physiological detection of interaural phase differences. The Journal of the Acoustical Society of America, 121(2), 1017–1027.

    Article  PubMed  Google Scholar 

  • Ross, B., Fujioka, T., Tremblay, K. L., & Picton, T. W. (2007b). Aging in binaural hearing begins in mid-life: Evidence from cortical auditory-evoked responses to changes in interaural phase. The Journal of Neuroscience, 27(42), 11172–11178.

    Article  CAS  PubMed  Google Scholar 

  • Ross, B., Miyazaki, T., Thompson, J., Jamali, S., & Fujioka, T. (2014). Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing. Journal of Neurophysiology, 112(8), 1871–1884.

    Article  PubMed  Google Scholar 

  • Salminen, N. H., Tiitinen, H., Yrttiaho, S., & May, P. J. (2010). The neural code for interaural time difference in human auditory cortex. The Journal of the Acoustical Society of America, 127(2), EL60–65.

    Google Scholar 

  • Scott, S. K., & McGettigan, C. (2013). The neural processing of masked speech. Hearing Research, 303, 58–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott, S. K., Rosen, S., Wickham, L., & Wise, R. J. S. (2004). A positron emission tomography study of the neural basis of informational and energetic masking effects in speech perception. The Journal of the Acoustical Society of America, 115(2), 813–821.

    Article  PubMed  Google Scholar 

  • Scott, S. K., Rosen, S., Beaman, C. P., Davis, J. P., & Wise, R. J. S. (2009). The neural processing of masked speech: Evidence for different mechanisms in the left and right temporal lobes. The Journal of the Acoustical Society of America, 125(3), 1737–1743.

    Article  PubMed  Google Scholar 

  • Shamma, S. A., Elhilali, M., & Micheyl, C. (2011). Temporal coherence and attention in auditory scene analysis. Trends in Neurosciences, 34(3), 114–123.

    Article  CAS  PubMed  Google Scholar 

  • Shuai, L., & Elhilali, M. (2014). Task-dependent neural representations of salient events in dynamic auditory scenes. Frontiers in Neuroscience, 8, 203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon, J. Z., Depireux, D. A., Klein, D. J., Fritz, J. B., & Shamma, S. A. (2007). Temporal symmetry in primary auditory cortex: Implications for cortical connectivity. Neural Computation, 19(3), 583–638.

    Article  PubMed  Google Scholar 

  • Snyder, J. S., Alain, C., & Picton, T. W. (2006). Effects of attention on neuroelectric correlates of auditory stream segregation. Journal of Cognitive Neuroscience, 18(1), 1–13.

    Article  PubMed  Google Scholar 

  • Snyder, J. S., Gregg, M. K., Weintraub, D. M., & Alain, C. (2012). Attention, awareness, and the perception of auditory scenes. Frontiers in Psychology, 3, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stecker, G. C., Harrington, I. A., & Middlebrooks, J. C. (2005). Location coding by opponent neural populations in the auditory cortex. PLoS Biology, 3(3), e78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sussman, E. S., Chen, S., Sussman-Fort, J., & Dinces, E. (2014). The five myths of MMN: Redefining how to use MMN in basic and clinical research. Brain Topography, 27(4), 553–564.

    Article  CAS  PubMed  Google Scholar 

  • Szalardy, O., Bohm, T. M., Bendixen, A., & Winkler, I. (2013). Event-related potential correlates of sound organization: Early sensory and late cognitive effects. Biological Psychology, 93(1), 97–104.

    Article  CAS  PubMed  Google Scholar 

  • Teki, S., Chait, M., Kumar, S., von Kriegstein, K., & Griffiths, T. D. (2011). Brain bases for auditory stimulus-driven figure-ground segregation. The Journal of Neuroscience, 31(1), 164–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, S. K., von Kriegstein, K., Deane-Pratt, A., Marquardt, T., et al. (2006). Representation of interaural time delay in the human auditory midbrain. Nature Neuroscience, 9(9), 1096–1098.

    Article  CAS  PubMed  Google Scholar 

  • van Noorden, L. P. A. S. (1975). Temporal coherence in the perception of tone sequences. PhD dissertation, Eindhoven University of Technology.

    Google Scholar 

  • von Kriegstein, K., Griffiths, T. D., Thompson, S. K., & McAlpine, D. (2008). Responses to interaural time delay in human cortex. Journal of Neurophysiology, 100(5), 2712–2718.

    Article  Google Scholar 

  • Wiegand, K., & Gutschalk, A. (2012). Correlates of perceptual awareness in human primary auditory cortex revealed by an informational masking experiment. NeuroImage, 61(1), 62–69.

    Article  PubMed  Google Scholar 

  • Wilson, E. C., Melcher, J. R., Micheyl, C., Gutschalk, A., & Oxenham, A. J. (2007). Cortical FMRI activation to sequences of tones alternating in frequency: Relationship to perceived rate and streaming. Journal of Neurophysiology, 97(3), 2230–2238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang, J., Simon, J., & Elhilali, M. (2010). Competing streams at the cocktail party: Exploring the mechanisms of attention and temporal integration. The Journal of Neuroscience, 30(36), 12084–12093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zion Golumbic, E. M., Ding, N., Bickel, S., Lakatos, P., et al. (2013). Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron, 77(5), 980–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Support for the author’s work was provided by the National Institute of Deafness and Other Communication Disorders Grant R01-DC-014085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Z. Simon .

Editor information

Editors and Affiliations

Ethics declarations

Jonathan Z. Simon declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Simon, J.Z. (2017). Human Auditory Neuroscience and the Cocktail Party Problem. In: Middlebrooks, J., Simon, J., Popper, A., Fay, R. (eds) The Auditory System at the Cocktail Party. Springer Handbook of Auditory Research, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-319-51662-2_7

Download citation

Publish with us

Policies and ethics