Skip to main content

Hearing with Cochlear Implants and Hearing Aids in Complex Auditory Scenes

  • Chapter
  • First Online:
The Auditory System at the Cocktail Party

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 60))

Abstract

One of the most important tasks that humans face is communication in complex, noisy acoustic environments. In this chapter, the focus is on populations of children and adult listeners who suffer from hearing loss and are fitted with cochlear implants (CIs) and/or hearing aids (HAs) in order to hear. The clinical trend is to provide patients with the ability to hear in both ears. This trend to stimulate patients in both ears has stemmed from decades of research with normal-hearing (NH) listeners, demonstrating the importance of binaural and spatial cues for segregating multiple sound sources. There are important effects due to the type of stimuli used, testing parameters, and auditory task utilized. The review of research in hearing impaired populations notes auditory cues that are potentially available to users of CIs and HAs. In addition, there is discussion of limitations resulting from the ways that devices handle auditory cues, auditory deprivation, and other factors that are inherently problematic for these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aronoff, J. M., Yoon, Y. S., Freed, D. J., Vermiglio, A. J., et al. (2010). The use of interaural time and level difference cues by bilateral cochlear implant users. The Journal of the Acoustical Society of America, 127(3), EL87–EL92.

    Google Scholar 

  • Başkent, D., & Shannon, R. V. (2004). Frequency-place compression and expansion in cochlear implant listeners. The Journal of the Acoustical Society of America, 116(5), 3130–3140.

    Article  PubMed  Google Scholar 

  • Bentler, R. A., Egge, J. L., Tubbs, J. L., Dittberner, A. B., & Flamme, G. A. (2004). Quantification of directional benefit across different polar response patterns. Journal of the American Academy of Audiology, 15(9), 649–659.

    Article  PubMed  Google Scholar 

  • Bernstein, J., Goupell, M. J., Schuchman, G. I., Rivera, A. L., & Brungart, D. S. (2016). Having two ears facilitates the perceptual separation of concurrent talkers for bilateral and single-sided deaf cochlear implantees. Ear and Hearing, 37(3), 289–302.

    Article  PubMed  Google Scholar 

  • Bernstein, L. R., & Trahiotis, C. (2002). Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli.” The Journal of the Acoustical Society of America, 112(3 Pt. 1), 1026–1036.

    Google Scholar 

  • Bertoli, S., Staehelin, K., Zemp, E., Schindler, C., et al. (2009). Survey on hearing aid use and satisfaction in Switzerland and their determinants. International Journal of Audiology, 48(4), 183–195.

    Article  PubMed  Google Scholar 

  • Bingabr, M., Espinoza-Varas, B., & Loizou, P. C. (2008). Simulating the effect of spread of excitation in cochlear implants. Hearing Research, 241(1–2), 73–79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bronkhorst, A. W. (2000). The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions. Acta Acustica united with Acustica, 86(1), 117–128.

    Google Scholar 

  • Buss, E., Pillsbury, H. C., Buchman, C. A., Pillsbury, C. H., et al. (2008). Multicenter U.S. bilateral MED-EL cochlear implantation study: speech perception over the first year of use. Ear and Hearing, 29(1), 20–32.

    PubMed  Google Scholar 

  • Byrne, D., & Noble, W. (1998). Optimizing sound localization with hearing AIDS. Trends in Amplification, 3(2), 51–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chadha, N. K., Papsin, B. C., Jiwani, S., & Gordon, K. A. (2011). Speech detection in noise and spatial unmasking in children with simultaneous versus sequential bilateral cochlear implants. Otology & Neurotology, 32(7), 1057–1064.

    Article  Google Scholar 

  • Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. The Journal of the Acoustical Society of America, 25, 975–979.

    Article  Google Scholar 

  • Ching, T. Y., van Wanrooy, E., Dillon, H., & Carter, L. (2011). Spatial release from masking in normal-hearing children and children who use hearing aids. The Journal of the Acoustical Society of America, 129(1), 368–375.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung, K. (2004). Challenges and recent developments in hearing aids. Part I. Speech understanding in noise, microphone technologies and noise reduction algorithms. Trends in Amplification, 8(3), 83–124.

    Google Scholar 

  • Churchill, T. H., Kan, A., Goupell, M. J., & Litovsky, R. Y. (2014). Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listenersa). The Journal of the Acoustical Society of America, 136(3), 1246–1256.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cleary, M., Pisoni, D. B., & Geers, A. E. (2001). Some measures of verbal and spatial working memory in eight- and nine-year-old hearing-impaired children with cochlear implants. Ear and Hearing, 22(5), 395–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cord, M. T., Surr, R. K., Walden, B. E., & Olson, L. (2002). Performance of directional microphone hearing aids in everyday life. Journal of the American Academy of Audiology, 13(6), 295–307.

    PubMed  Google Scholar 

  • Cox, R. M., Schwartz, K. S., Noe, C. M., & Alexander, G. C. (2011). Preference for one or two hearing AIDS among adult patients. Ear and Hearing, 32(2), 181–197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dillon, H. (2012). Hearing aids. New York: Thieme.

    Google Scholar 

  • Dittberner, A. B., & Bentler, R. A. (2007). Predictive measures of directional benefit. Part 1: Estimating the directivity index on a manikin. Ear and Hearing, 28(1), 26–45.

    Article  PubMed  Google Scholar 

  • Durlach, N. I., Mason, C. R., Shinn-Cunningham, B. G., Arbogast, T. L., et al. (2003). Informational masking: Counteracting the effects of stimulus uncertainty by decreasing target-masker similarity. The Journal of the Acoustical Society of America, 114(1), 368–379.

    Article  PubMed  Google Scholar 

  • Eapen, R. J., Buss, E., Adunka, M. C., Pillsbury, H. C., 3rd, & Buchman, C. A. (2009). Hearing-in-noise benefits after bilateral simultaneous cochlear implantation continue to improve 4 years after implantation. Otology & Neurotology, 30(2), 153–159.

    Article  Google Scholar 

  • Edwards, B. (2007). The future of hearing aid technology. Trends in Amplification, 11(1), 31–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Festen, J. M., & Plomp, R. (1986). Speech-reception threshold in noise with one and two hearing aids. The Journal of the Acoustical Society of America, 79(2), 465–471.

    Article  CAS  PubMed  Google Scholar 

  • Freyman, R. L., Balakrishnan, U., & Helfer, K. S. (2008). Spatial release from masking with noise-vocoded speech. The Journal of the Acoustical Society of America, 124(3), 1627–1637.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garadat, S. N., Litovsky, R. Y., Yu, G., & Zeng, F.-G. (2009). Role of binaural hearing in speech intelligibility and spatial release from masking using vocoded speech. The Journal of the Acoustical Society of America, 126(5), 2522–2535.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garadat, S. N., Litovsky, R. Y., Yu, G., & Zeng, F.-G. (2010). Effects of simulated spectral holes on speech intelligibility and spatial release from masking under binaural and monaural listening. The Journal of the Acoustical Society of America, 127(2), 977–989.

    Article  PubMed  PubMed Central  Google Scholar 

  • Geers, A., Brenner, C., & Davidson, L. (2003). Factors associated with development of speech perception skills in children implanted by age five. Ear and Hearing, 24(1 Suppl.), 24S–35S.

    Article  PubMed  Google Scholar 

  • Gordon, K. A., Jiwani, S., & Papsin, B. C. (2013). Benefits and detriments of unilateral cochlear implant use on bilateral auditory development in children who are deaf. Frontiers in Psychology, 4, 719.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon, K. A., & Papsin, B. C. (2009). Benefits of short interimplant delays in children receiving bilateral cochlear implants. Otology & Neurotology, 30(3), 319–331.

    Article  Google Scholar 

  • Gordon, K. A., Wong, D. D. E., Valero, J., Jewell, S. F., et al. (2011). Use it or lose it? Lessons learned from the developing brains of children who are deaf and use cochlear implants to hear. Brain Topography, 24(3–4), 204–219.

    Article  CAS  PubMed  Google Scholar 

  • Goupell, M. J. (2015). Interaural envelope correlation change discrimination in bilateral cochlear implantees: Effects of mismatch, centering, and onset of deafness. The Journal of the Acoustical Society of America, 137(3), 1282–1297.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goupell, M. J., Kan, A., & Litovsky, R. Y. (2013). Mapping procedures can produce non-centered auditory images in bilateral cochlear implantees. The Journal of the Acoustical Society of America, 133(2), EL101–EL107.

    Google Scholar 

  • Goupell, M. J., & Litovsky, R. Y. (2015). Sensitivity to interaural envelope correlation changes in bilateral cochlear-implant users. The Journal of the Acoustical Society of America, 137(1), 335–349.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimes, A. M., Mueller, H. G., & Malley, J. D. (1981). Examination of binaural amplification in children. Ear and Hearing, 2(5), 208–210.

    Article  CAS  PubMed  Google Scholar 

  • Gstoettner, W., Franz, P., Hamzavi, J., Plenk, H., Jr., et al. (1999). Intracochlear position of cochlear implant electrodes. Acta Oto-Laryngologica, 119(2), 229–233.

    Article  CAS  PubMed  Google Scholar 

  • Hawley, M. L., Litovsky, R. Y., & Culling, J. F. (2004). The benefit of binaural hearing in a cocktail party: effect of location and type of interferer. The Journal of the Acoustical Society of America, 115(2), 833–843.

    Article  PubMed  Google Scholar 

  • Henkin, Y., Waldman, A., & Kishon-Rabin, L. (2007). The benefits of bilateral versus unilateral amplification for the elderly: Are two always better than one? Journal of Basic and Clinical Physiology and Pharmacology, 18(3), 201–216.

    Article  PubMed  Google Scholar 

  • Hochmair, I., Nopp, P., Jolly, C., Schmidt, M., et al. (2006). MED-EL cochlear implants: State of the art and a glimpse into the future. Trends in Amplification, 10(4), 201–219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hornsby, B. W., & Ricketts, T. A. (2007). Effects of noise source configuration on directional benefit using symmetric and asymmetric directional hearing aid fittings. Ear and Hearing, 28(2), 177–186.

    Article  PubMed  Google Scholar 

  • Ihlefeld, A., & Litovsky, R. Y. (2012). Interaural level differences do not suffice for restoring spatial release from masking in simulated cochlear implant listening. PLoS ONE, 7(9), e45296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone, P. M., & Litovsky, R. Y. (2006). Effect of masker type and age on speech intelligibility and spatial release from masking in children and adults. The Journal of the Acoustical Society of America, 120(4), 2177–2189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnstone, P. M., Nabelek, A. K., & Robertson, V. S. (2010). Sound localization acuity in children with unilateral hearing loss who wear a hearing aid in the impaired ear. Journal of the American Academy of Audiology, 21(8), 522–534.

    Article  PubMed  Google Scholar 

  • Jones, G. L., & Litovsky, R. Y. (2011). A cocktail party model of spatial release from masking by both noise and speech interferers. The Journal of the Acoustical Society of America, 130(3), 1463–1474.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kan, A., & Litovsky, R. Y. (2015). Binaural hearing with electrical stimulation. Hearing Research, 322, 127–137.

    Article  PubMed  Google Scholar 

  • Kan, A., Litovsky, R. Y., & Goupell, M. J. (2015). Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users. Ear and Hearing, 36(3), e62–e68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kan, A., Stoelb, C., Litovsky, R. Y., & Goupell, M. J. (2013). Effect of mismatched place-of-stimulation on binaural fusion and lateralization in bilateral cochlear-implant usersa). The Journal of the Acoustical Society of America, 134(4), 2923–2936.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaplan-Neeman, R., Muchnik, C., Hildesheimer, M., & Henkin, Y. (2012). Hearing aid satisfaction and use in the advanced digital era. Laryngoscope, 122(9), 2029–2036.

    Article  PubMed  Google Scholar 

  • Kates, J. M., & Arehart, K. H. (2005). A model of speech intelligibility and quality in hearing aids. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, October 16–19, 2005.

    Google Scholar 

  • Kerber, S., & Seeber, B. U. (2012). Sound localization in noise by normal-hearing listeners and cochlear implant users. Ear and Hearing, 33(4), 445–457.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobler, S., & Rosenhall, U. (2002). Horizontal localization and speech intelligibility with bilateral and unilateral hearing aid amplification. International Journal of Audiology, 41(7), 395–400.

    Article  CAS  PubMed  Google Scholar 

  • Kokkinakis, K., & Loizou, P. C. (2010). Multi-microphone adaptive noise reduction strategies for coordinated stimulation in bilateral cochlear implant devices. The Journal of the Acoustical Society of America, 127(5), 3136–3144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laback, B., Egger, K., & Majdak, P. (2015). Perception and coding of interaural time differences with bilateral cochlear implants. Hearing Research, 322, 138–150.

    Article  PubMed  Google Scholar 

  • Lavandier, M., & Culling, J. F. (2007). Speech segregation in rooms: Effects of reverberation on both target and interferer. The Journal of the Acoustical Society of America, 122(3), 1713.

    Article  PubMed  Google Scholar 

  • Lee, A. K., & Shinn-Cunningham, B. G. (2008). Effects of reverberant spatial cues on attention-dependent object formation. Journal of the Association for Research in Otolaryngology, 9(1), 150–160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Litovsky, R. Y., & Gordon, K. (2016). Bilateral cochlear implants in children: Effects of auditory experience and deprivation on auditory perception. Hearing Research. doi:10.1016/j.heares.2016.01.003.

    PubMed  Google Scholar 

  • Litovsky, R. Y., Goupell, M. J., Godar, S., Grieco-Calub, T., et al. (2012). Studies on bilateral cochlear implants at the University of Wisconsin’s Binaural Hearing and Speech Laboratory. Journal of the American Academy of Audiology, 23(6), 476–494.

    PubMed  PubMed Central  Google Scholar 

  • Litovsky, R. Y., Johnstone, P. M., & Godar, S. P. (2006). Benefits of bilateral cochlear implants and/or hearing aids in children. International Journal of Audiology, 45(Suppl. 1), S78–891.

    Article  PubMed  PubMed Central  Google Scholar 

  • Litovsky, R. Y., Jones, G. L., Agrawal, S., & van Hoesel, R. (2010). Effect of age at onset of deafness on binaural sensitivity in electric hearing in humans. The Journal of the Acoustical Society of America, 127(1), 400–414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Litovsky, R. Y., & Misurelli, S. M. (2016). Does bilateral experience lead to improved spatial unmasking of speech in children who use bilateral cochlear implants? Otology & Neurotology, 37(2), e35–e42.

    Article  Google Scholar 

  • Litovsky, R. Y., Parkinson, A., & Arcaroli, J. (2009). Spatial hearing and speech intelligibility in bilateral cochlear implant users. Ear and Hearing, 30(4), 419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loizou, P. C. (1999). Introduction to cochlear implants. IEEE Engineering in Medicine and Biology Magazine, 18(1), 32–42.

    Article  CAS  PubMed  Google Scholar 

  • Loizou, P. C. (2006). Speech processing in vocoder-centric cochlear implants (Vol. 64). Basel, Switzerland: Karger.

    Google Scholar 

  • Loizou, P. C., Hu, Y., Litovsky, R., Yu, G., et al. (2009). Speech recognition by bilateral cochlear implant users in a cocktail-party setting. The Journal of the Acoustical Society of America, 125(1), 372–383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Long, C. J., Carlyon, R. P., Litovsky, R. Y., & Downs, D. H. (2006). Binaural unmasking with bilateral cochlear implants. Journal of the Association for Research in Otolaryngology, 7(4), 352–360.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, T., Litovsky, R., & Zeng, F. G. (2011). Binaural unmasking with multiple adjacent masking electrodes in bilateral cochlear implant users. The Journal of the Acoustical Society of America, 129(6), 3934–3945.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luts, H., Eneman, K., Wouters, J., Schulte, M., et al. (2010). Multicenter evaluation of signal enhancement algorithms for hearing aids. The Journal of the Acoustical Society of America, 127(3), 1491–1505.

    Article  PubMed  Google Scholar 

  • Macpherson, E. A., & Middlebrooks, J. C. (2002). Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited. The Journal of the Acoustical Society of America, 111(5), 2219–2236.

    Article  PubMed  Google Scholar 

  • Marrone, N., Mason, C. R., & Kidd, G., Jr. (2008). Evaluating the benefit of hearing aids in solving the cocktail party problem. Trends in Amplification, 12(4), 300–315.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mencher, G. T., & Davis, A. (2006). Bilateral or unilateral amplification: Is there a difference? A brief tutorial. International Journal of Audiology, 45(Suppl. 1), S3–11.

    Article  PubMed  Google Scholar 

  • Middlebrooks, J. C., & Green, D. M. (1990). Directional dependence of interaural envelope delays. The Journal of the Acoustical Society of America, 87(5), 2149–2162.

    Article  CAS  PubMed  Google Scholar 

  • Misurelli, S. M., & Litovsky, R. Y. (2012). Spatial release from masking in children with normal hearing and with bilateral cochlear implants: Effect of interferer asymmetry. The Journal of the Acoustical Society of America, 132(1), 380–391.

    Article  PubMed  PubMed Central  Google Scholar 

  • Misurelli, S. M., & Litovsky, R. Y. (2015). Spatial release from masking in children with bilateral cochlear implants and with normal hearing: Effect of target-interferer similarity. The Journal of the Acoustical Society of America, 138(1), 319–331.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mok, M., Galvin, K. L., Dowell, R. C., & McKay, C. M. (2007). Spatial unmasking and binaural advantage for children with normal hearing, a cochlear implant and a hearing aid, and bilateral implants. Audiology and Neuro-Otology, 12(5), 295–306.

    Article  PubMed  Google Scholar 

  • Moore, B. C., & Alcántara, J. I. (2001). The use of psychophysical tuning curves to explore dead regions in the cochlea. Ear and Hearing, 22(4), 268–278.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, D. A., Donaldson, G. S., & Kreft, H. (2008). Forward-masked spatial tuning curves in cochlear implant users. The Journal of the Acoustical Society of America, 123(3), 1522–1543.

    Article  PubMed  PubMed Central  Google Scholar 

  • Noble, W. (2010). Assessing binaural hearing: results using the speech, spatial and qualities of hearing scale. Journal of the American Academy of Audiology, 21(9), 568–574.

    Article  PubMed  Google Scholar 

  • Noble, W., & Gatehouse, S. (2006). Effects of bilateral versus unilateral hearing aid fitting on abilities measured by the Speech, Spatial, and Qualities of Hearing Scale (SSQ). International Journal of Audiology, 45(3), 172–181.

    Article  PubMed  Google Scholar 

  • Noel, V. A., & Eddington, D. K. (2013). Sensitivity of bilateral cochlear implant users to fine-structure and envelope interaural time differences. The Journal of the Acoustical Society of America, 133(4), 2314–2328.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters, B. R., Litovsky, R., Parkinson, A., & Lake, J. (2007). Importance of age and postimplantation experience on speech perception measures in children with sequential bilateral cochlear implants. Otology & Neurotology, 28(5), 649–657.

    Article  Google Scholar 

  • Pisoni, D. B., & Cleary, M. (2003). Measures of working memory span and verbal rehearsal speed in deaf children after cochlear implantation. Ear and Hearing, 24(1 Suppl.), 106S–120S.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poon, B. B., Eddington, D. K., Noel, V., & Colburn, H. S. (2009). Sensitivity to interaural time difference with bilateral cochlear implants: Development over time and effect of interaural electrode spacing. The Journal of the Acoustical Society of America, 126(2), 806–815.

    Article  PubMed  PubMed Central  Google Scholar 

  • Runge, C. L., Jensen, J., Friedland, D. R., Litovsky, R. Y., & Tarima, S. (2011). Aiding and occluding the contralateral ear in implanted children with auditory neuropathy spectrum disorder. Journal of the American Academy of Audiology, 22(9), 567–577.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seeber, B. U., & Fastl, H. (2008). Localization cues with bilateral cochlear implants. The Journal of the Acoustical Society of America, 123(2), 1030–1042.

    Article  PubMed  Google Scholar 

  • Shannon, R. V., Galvin, J. J., III, & Baskent, D. (2002). Holes in hearing. Journal of the Association for Research in Otolaryngology, 3(2), 185–199.

    Article  PubMed  Google Scholar 

  • Siciliano, C. M., Faulkner, A., Rosen, S., & Mair, K. (2010). Resistance to learning binaurally mismatched frequency-to-place maps: Implications for bilateral stimulation with cochlear implants a. The Journal of the Acoustical Society of America, 127(3), 1645–1660.

    Article  PubMed  Google Scholar 

  • Souza, P. E. (2002). Effects of compression on speech acoustics, intelligibility, and sound quality. Trends in Amplification, 6(4), 131–165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Swan, I. R., Browning, G. G., & Gatehouse, S. (1987). Optimum side for fitting a monaural hearing aid. 1. Patients’ preference. British Journal of Audiology, 21(1), 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Swan, I., & Gatehouse, S. (1987). Optimum side for fitting a monaural hearing aid 2. Measured benefit. British Journal of Audiology, 21(1), 67–71.

    Article  CAS  PubMed  Google Scholar 

  • van Besouw, R. M., Forrester, L., Crowe, N. D., & Rowan, D. (2013). Simulating the effect of interaural mismatch in the insertion depth of bilateral cochlear implants on speech perception. The Journal of the Acoustical Society of America, 134(2), 1348–1357.

    Article  PubMed  Google Scholar 

  • Van Deun, L., van Wieringen, A., & Wouters, J. (2010). Spatial speech perception benefits in young children with normal hearing and cochlear implants. Ear and Hearing, 31(5), 702–713.

    PubMed  Google Scholar 

  • van Hoesel, R., Bohm, M., Pesch, J., Vandali, A., et al. (2008). Binaural speech unmasking and localization in noise with bilateral cochlear implants using envelope and fine-timing based strategies. The Journal of the Acoustical Society of America, 123(4), 2249–2263.

    Article  PubMed  Google Scholar 

  • van Hoesel, R. J., Jones, G. L., & Litovsky, R. Y. (2009). Interaural time-delay sensitivity in bilateral cochlear implant users: Effects of pulse rate, modulation rate, and place of stimulation. Journal of the Association for Research in Otolaryngology, 10(4), 557–567.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Hoesel, R., Tong, Y., Hollow, R., & Clark, G. M. (1993). Psychophysical and speech perception studies: A case report on a binaural cochlear implant subject. The Journal of the Acoustical Society of America, 94(6), 3178–3189.

    Article  PubMed  Google Scholar 

  • van Hoesel, R. J., & Tyler, R. S. (2003). Speech perception, localization, and lateralization with bilateral cochlear implants. The Journal of the Acoustical Society of America, 113(3), 1617–1630.

    Article  PubMed  Google Scholar 

  • Watson, C. S. (2005). Some comments on informational masking. Acta Acustica united with Acustica, 91(3), 502–512.

    Google Scholar 

  • Wiggins, I. M., & Seeber, B. U. (2013). Linking dynamic-range compression across the ears can improve speech intelligibility in spatially separated noise. The Journal of the Acoustical Society of America, 133(2), 1004–1016.

    Article  PubMed  Google Scholar 

  • Wightman, F. L., & Kistler, D. J. (1992). The dominant role of low-frequency interaural time differences in sound localization. The Journal of the Acoustical Society of America, 91(3), 1648–1661.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, F.-G., Popper, A., & Fay, R. R. (2011). Auditory prostheses: New horizons. New York: Springer Science & Business Media.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Y. Litovsky .

Editor information

Editors and Affiliations

Ethics declarations

Ruth Litovsky received travel support for a conference from Cochlear Ltd. and from MedEl.

Matthew Goupell had no conflicts of interest.

Alan Kan owns stocks in Cochlear Ltd.

Sara Misurelli had no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Litovsky, R.Y., Goupell, M.J., Misurelli, S.M., Kan, A. (2017). Hearing with Cochlear Implants and Hearing Aids in Complex Auditory Scenes. In: Middlebrooks, J., Simon, J., Popper, A., Fay, R. (eds) The Auditory System at the Cocktail Party. Springer Handbook of Auditory Research, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-319-51662-2_10

Download citation

Publish with us

Policies and ethics