Skip to main content

Inverse Parabolic Problems

  • Chapter
  • First Online:
Inverse Problems for Partial Differential Equations

Part of the book series: Applied Mathematical Sciences ((AMS,volume 127 ))

  • 3355 Accesses

Abstract

In this chapter, we consider the second-order parabolic equation

$$\displaystyle{ a_{0}\partial _{t}u -\mathrm{div}(a\nabla u) + b \cdot \nabla u + cu = f\,\mathrm{in}\,Q = \varOmega \times (0,T), }$$

where Ω is a bounded domain the space \(\mathbb{R}^{n}\) with the C 2-smooth boundary ∂ Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belishev, M.I. Recent progress in the boundary control method. Inverse Problems, 23 (2007), R1-R67.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bouchouev, I., Isakov, V. Uniqueness, stability, and numerical methods for the inverse problem that arises in financial markets. Inverse Problems, 15 (1999), R1–R22.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouchouev, I., Isakov, V., Valdivia, N. Recovery of volatility coefficient by linearization. Quantit. Finance, 2 (2002), 257–263.

    Article  MathSciNet  Google Scholar 

  4. Colombo, F., Vespri, V. Generations of analytic semigroups in W k, p(Ω) and \(C^{k}(\mathrm{\bar{\varOmega }})\). Differential and Integral Equations 9 (1996), 421–436.

    MathSciNet  Google Scholar 

  5. Elayyan, A., Isakov, V. On Uniqueness of Recovery of the Discontinuous Conductivity Coefficient of a Parabolic Equation. SIAM J. Math. Analysis, 28 (1997), 49–59.

    Article  MathSciNet  MATH  Google Scholar 

  6. Friedman, A. Partial Differential Equations of Parabolic Type. Prentice-Hall, 1964.

    MATH  Google Scholar 

  7. Guidetti, D. Convergence to a Stationary State and Stability for Solutions of Quasilinear Parabolic Equations. Ann. Mat. Pure Appl., CLI (1988), 331–358.

    Google Scholar 

  8. Imanuvilov, O., Yamamoto, M. Lipschitz stability in inverse parabolic problems by Carleman estimate. Inverse Problems, 14 (1998), 1229–1247.

    Article  MathSciNet  MATH  Google Scholar 

  9. Isakov, V. On uniqueness of recovery of a discontinuous conductivity coefficient. Comm. Pure Appl. Math. 41 (1988), 865–877.

    Article  MathSciNet  MATH  Google Scholar 

  10. Isakov, V. Inverse Source Problems. Math. Surveys and Monographs Series, Vol. 34, AMS, Providence, R.I., 1990.

    Google Scholar 

  11. Isakov, V. Inverse Parabolic Problems with the Final Overdetermination. Comm. Pure Appl. Math., 54 (1991), 185–209.

    Article  MathSciNet  MATH  Google Scholar 

  12. Isakov, V. On uniqueness in inverse problems for semi linear parabolic equations. Arch. Rat. Mech. Anal., 124 (1993), 1–13.

    Article  MATH  Google Scholar 

  13. Isakov, V. Recovery of time dependent volatility coefficient by linearisation. Evol. Equat. Control Theory, 3 (2014), 119–134.

    Article  MATH  Google Scholar 

  14. John, F. Numerical Solution of the heat equation for preceding time. Ann. Mat. Pura Appl., 40 (1955), 129–142.

    Article  MathSciNet  MATH  Google Scholar 

  15. John, F. Collected papers, vol. 1. Birkhäuser-Verlag, Basel-Boston, 1985.

    Google Scholar 

  16. Katchalov, A., Kurylev, Y., Lassas, M. Inverse boundary spectral problems. Chapman and Hall-CRC, 2000.

    MATH  Google Scholar 

  17. Krein, S.G. Linear Differential Equations in Banach Space. Transl. Math. Monogr., 29, AMS, 1971.

    Google Scholar 

  18. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N. Linear and quasilinear equations of parabolic type. Transl. Math. Monogr., 23, AMS, Providence, R.I., 1968.

    Google Scholar 

  19. Prilepko, A.I., Orlovskii, D.G., Vasin, I.A. Methods for solving inverse problems in mathematical physics. Marcel Dekker, New York-Basel, 2000.

    Google Scholar 

  20. Prilepko, A.I., Solov’ev, V.V. Solvability theorems and the Rothe method in inverse problems for an equation of parabolic type, II. Diff. Equat, 23 (1987), 1341–1349.

    MathSciNet  MATH  Google Scholar 

  21. Tikhonov, A.N. Theorèmes d’unicité pour l’équation de la chaleur. Mat. Sborn., 42 (1935), 199–216.

    MATH  Google Scholar 

  22. Vessella, S. Stability estimates in an Inverse Problem for a Three-Dimensional Heat Equation. SIAM J. Math. Anal., 28 (1997), 1354–1370.

    Article  MathSciNet  MATH  Google Scholar 

  23. Yosida, K. Functional Analysis. Springer, 1980.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Isakov, V. (2017). Inverse Parabolic Problems. In: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol 127 . Springer, Cham. https://doi.org/10.1007/978-3-319-51658-5_9

Download citation

Publish with us

Policies and ethics