Hyperbolic Problems

  • Victor Isakov
Part of the Applied Mathematical Sciences book series (AMS, volume 127)


In this chapter, we are interested in finding coefficients of the second-order hyperbolic operator.


  1. [Ar]
    Arnaud, J. Beam and fiber optics. Academic Press, 1976.Google Scholar
  2. [Be1]
    Belishev, M.I. Wave bases in multidimensional inverse problems. Math. USSR Sb., 67 (1990), 23–42.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Be2]
    Belishev, M.I. The boundary control and the continuation of wave fields. Preprint P-I-90, Leningrad, 1990 (in Russian).Google Scholar
  4. [Be3]
    Belishev, M.I. Recent progress in the boundary control method. Inverse Problems, 23 (2007), R1-R67.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [BeIPS]
    Belishev, M., Isakov, V., Pestov, L., Sharafutdinov, V. On the reconstruction of a metric from external electromagnetic measurements. Russ. Dokl. Akad. Nauk, 372 (2000), 298–300.MathSciNetzbMATHGoogle Scholar
  6. [BeK]
    Belishev, M.I., Kurylev, Ya. To the reconstruction of a Riemannian manifold via its boundary spectral data (BC-method). Comm. Part. Diff. Equat., 17 (1992), 767–804.Google Scholar
  7. [BuK]
    Bukhgeim, A.L., Klibanov, M.V. Uniqueness in the large of a class of multidimensional inverse problems. Soviet Math. Dokl. 24 (1981), 244–247.Google Scholar
  8. [BuCIY]
    Bukhgeim, A.L., Cheng, J., Isakov, V., Yamamoto, M. Uniqueness in determining damping coefficients in hyperbolic equations. In Analytic Extension Formulas and their Applications. Kluwer, 2001, 27–46.Google Scholar
  9. [Ci]
    Ciarlet, P.G. Mathematical Elasticity. North-Holland, Amsterdam, 1988.zbMATHGoogle Scholar
  10. [CouH]
    Courant, R., Hilbert, D. Methods of Mathematical Physics. Vol. II. Wiley, 1962.zbMATHGoogle Scholar
  11. [Es2]
    Eskin, G. Inverse boundary value problems and the Aharonov-Bohm effect. Inverse Problems, 19 (2003), 49–63.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Hö2]
    Hörmander, L. The Analysis of Linear Partial Differential Operators. Springer Verlag, New York, 1983–1985.Google Scholar
  13. [IY2]
    Imanuvilov, O., Yamamoto, M. Global uniqueness and stability in determining coefficients of wave equations. Comm. Part. Diff. Equat., 26 (2001), 1409–1425.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [IY3]
    Imanuvilov, O., Yamamoto, M. Determination of a coefficient in an acoustic equation with a single measurement. Inverse Problems, 19 (2003), 157–173.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [IIY]
    Imanuvilov, O., Isakov, V., Yamamoto, M. An inverse problem for the dynamical Lame system with two sets of boundary data. Comm. Pure Appl. Math., 56 (2003), 1366–1382.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Is4]
    Isakov, V. Inverse Source Problems. Math. Surveys and Monographs Series, Vol. 34, AMS, Providence, R.I., 1990.Google Scholar
  17. [Is7]
    Isakov, V. Completeness of products of solutions and some inverse problems for PDE. J. Diff. Equat., 92 (1991), 305–317.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Is11]
    Isakov, V. On uniqueness for a discontinuity surface of a speed of propagation. J. Inverse Ill-Posed Problems, 3 (1996) 33–38.MathSciNetzbMATHGoogle Scholar
  19. [IsKi]
    Isakov, V., Kim, N. Weak Carleman estimates with two large parameters for second order equations and applications. Discr. Cont. Dyn. Syst., A, 27 (2010), 799–827.CrossRefzbMATHGoogle Scholar
  20. [IsSu1]
    Isakov, V., Sun, Z. Stability estimates for hyperbolic inverse problems with local boundary data. Inverse Problems, 8 (1992), 193–206.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [IsYW]
    Isakov, V., Yamamoto, M., Wang, J.-N. Uniqueness and stability of determining the residual stress by one measurement. Comm. Part. Diff. Equat., 32 (2007), 833–848.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [KKL]
    Katchalov, A., Kurylev, Y., Lassas, M. Inverse boundary spectral problems. Chapman and Hall-CRC, 2000.zbMATHGoogle Scholar
  23. [Kh2]
    Khaidarov, A. Estimates for stability in multidimensional inverse problems for differential equation. Soviet Math. Dokl., 38 (1989), 614–617.MathSciNetGoogle Scholar
  24. [Kr]
    Krein, M. On inverse problems for an inhomogeneous string. Dokl. Akad. Nauk SSSR, 82 (1952), 669–672.Google Scholar
  25. [LaT]
    Lasiecka, I., Triggiani, R. Recent advances in Regularity of Second-Order Hyperbolic Mixed problems, and Applications. Expositions in Dynamical Systems, 3, Springer-Verlag, 1994, 105–160.Google Scholar
  26. [LaB]
    Lavrentiev, M.M., Bukhgeim, A. A certain class of operator equations of the first kind. Funct. Anal. Appl., 7 (1973), 290–298.MathSciNetCrossRefGoogle Scholar
  27. [Li]
    Lions, J.-L. Optimal Control of Systems governed by Partial Differential Equations. Springer, 1970.Google Scholar
  28. [LiM]
    Lions, J.-L., Magenes, E. Non-Homogeneous Boundary Value Problems. Springer, 1972.CrossRefzbMATHGoogle Scholar
  29. [Mar]
    Marchenko, V.A. Sturm-Liouville Operators and Applications. Birkhäuser, 1986.CrossRefzbMATHGoogle Scholar
  30. [PoT]
    Pöschel, J., Trubowitz, E. Inverse Spectral Theory. Academic Press, Orlando, 1986.zbMATHGoogle Scholar
  31. [PY]
    Puel, J.-P., Yamamoto, M. On a global estimate in a linear inverse hyperbolic problem. Inverse Problems, 12 (1996), 995–1002.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [Ra]
    Rakesh. An inverse impedance transmission problem for the wave equation. Comm. Part. Diff. Equat., 18 (1993), 583–600.Google Scholar
  33. [Ral]
    Ralston, J. Gaussian beams and the propagation of singularities. Studies in Part. Diff. Equat., MAA Studies in Math, 23, Math. Assoc. America, Washington, C.C., 1982, 206–248.Google Scholar
  34. [Rom]
    Romanov, V.G.Inverse Problems of Mathematical Physics. VNU Science Press BV, Utrecht, 1987.Google Scholar
  35. [RS]
    Rondi, L., Sini, M. Stable determination of a scattered wave from its far field pattern: the high frequency asymptotics. Arch. Rat. Mech. Anal., 218 (2015), 1–54.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [SSy]
    Sacks, P., Symes, W. Uniqueness and continuous dependence for a multidimensional hyperbolic inverse problem. Comm. in Part. Diff. Equat., 10 (1985), 635–676.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [Sak]
    Sakamoto, R. Mixed problems for hyperbolic equations. J. Math. Kyoto Univ. 10 (1970), 375–417.MathSciNetCrossRefGoogle Scholar
  38. [SyU1]
    Sylvester, J., Uhlmann, G. Global Uniqueness Theorem for an Inverse Boundary Problem. Ann. Math., 125 (1987), 153–169.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [Tat4]
    Tataru, D. On the regularity of traces for the wave equation. Ann. Scoula Norm. Sup. Pisa Cl. Sci., 26 (1998), 185–206.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Victor Isakov
    • 1
  1. 1.Department of Mathematics and StatisticsWichita State UniversityWichitaUSA

Personalised recommendations