Advertisement

Elliptic Equations: Many Boundary Measurements

  • Victor Isakov
Chapter
  • 1.9k Downloads
Part of the Applied Mathematical Sciences book series (AMS, volume 127)

Abstract

We consider the Dirichlet problem (4.0.1), (4.0.2). At first we assume that for any Dirichlet data g0 we are given the Neumann data g1; in other words, we know the results of all possible boundary measurements, or the so-called Dirichlet-to-Neumann operator \(\mathrm{\Lambda }: H^{1/2}(\partial \Omega ) \rightarrow H^{-1/2}(\partial \Omega )\), which maps the Dirichlet data g0 into the Neumann data g1.

References

  1. [ADN]
    Agmon, S., Douglis, A., Nirenberg, L. Estimates near the boundary for the solutions of elliptic differential equations satisfying general boundary values, I. Comm. Pure Appl. Math., 12 (1959), 623–727.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Al1]
    Alessandrini, G. Stable Determination of Conductivity by Boundary Measurements. Applic. Analysis, 27 (1988), 153–172.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Al3]
    Alessandrini, G. Singular Solutions of Elliptic Equations and the Determination of Conductivity by Boundary Measurements. J. Diff. Equat., 84 (1990), 252–273.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [AC]
    Alessandrini, G., Di Cristo, M. Stable determination of an inclusion by boundary measurements. SIAM J. Math. Anal, 37 (2005), 200–217.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [AsP]
    Astala, K., Päivärinta, L. Calderon’s inverse conductivity problem in the plane. Ann. Math 163 (2006), 265–299.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [AsLP]
    Astala, K., Lassas, M., Päivärinta, L. Calderon’s inverse problem for anisotropic conductivity in the plane. Comm. Part. Diff. Equat., 30 (2005), 207–224.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [BC]
    Beals, R., Coifman, R. Multidimensional inverse scattering and nonlinear partial differential equations. In “Pseudodifferential operators and applications”. Proc. Symp. Pure Math., Vol. 43, AMS, Providence, RI, 1985, 45–70.Google Scholar
  8. [Be4]
    Belishev. M.I. The Calderon problem for two-dimensional manifolds by the BC-method. SIAM J. Math. Anal., 35 (2003), 172–183.Google Scholar
  9. [BIY]
    Blasten, E., Imanuvilov, O., Yamamoto, M. Stability and uniqueness for a two-dimensional inverse problem for less regular potentials. Inv. Probl. Imag., 9 (2015), 709–723.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Bu]
    Bukhgeim, A.L. Introduction to the theory of inverse problems. VSP, Utrecht, The Netherlands, 2000.Google Scholar
  11. [Bu1]
    Bukhgeim, A. L. Recovering a potential from Cauchy data in the two-dimensional case. J. Inverse Ill-Posed Probl., 16 (2008), 19–33.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [BuU]
    Bukhgeim, A.L., Uhlmann, G. Recovering a Potential from Partial Cauchy Data, Comm. Part. Diff. Equat., 27 (2002), 653–668.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [C]
    Calderon, A.P. On an inverse boundary value problem. “Seminar on numerical Analysis and Its Applications to Continuum Physics”, Rio de Janeiro, 1980, 65–73.Google Scholar
  14. [Car]
    Caro, P. On an inverse problem in electromagnetism with local data: stability and uniqueness Stability and uniqueness. Inv. Probl. Imag., 5 (2011), 297–322.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [CheY2]
    Cheng, J., Yamamoto, M. Determination of two convection coefficients from Dirichlet-to Neumann map in two-dimensional case. SIAM J. Math. Anal, 35 (2003), 1371–1393.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [CoP]
    Colton, D., Päivärinta, L. The Uniqueness of a Solution to an Inverse Scattering problem for Electromagnetic Waves. Arch. Rat. Mech. Anal., 119 (1992), 59–70.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Dr1]
    Druskin, V. The Unique Solution of the Inverse Problem of Electrical Surveying and Electrical Well-Logging for Piecewise-Continuous Conductivity. Izvestiya, Earth Physics, 18 (1982), 51–53.Google Scholar
  18. [Dr2]
    Druskin, V. On the uniqueness of inverse problems from incomplete boundary data. SIAM J. Appl. Math., 58 (1998), 1591–1603.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [EnI]
    Engl, H.W., Isakov, V. On the identifiability of steel reinforcement bars in concrete from magnostatic measurements. Eur. J. Appl. Math., 3 (1992), 255–262.CrossRefGoogle Scholar
  20. [Es1]
    Eskin, G. Global Uniqueness in the Inverse Scattering Problem for the Schr̈odinger Operator with External Yang-Mills Potentials. Comm. Math. Phys., 222 (2001), 503–531.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [EsR4]
    Eskin, G., Ralston, J. On the inverse boundary value problem for linear isotropic elasticity. Inverse Problems, 18 (2002), 907–923.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [FKSU]
    Ferreira dos Santos, D., Kenig, C., Sjöstrand, Uhlmann, G. On the linearised local Calderon problem. Math. Res. Lett., 16 (2009), 955–970.Google Scholar
  23. [HT]
    Habermann, B., Tataru, D. Uniqueness in the Calderon’s problem with Lipschitz conductivities. Duke Math. J., 162 (2013), 496–516.MathSciNetCrossRefGoogle Scholar
  24. [Ha]
    Hähner, P. A periodic Faddeev-type solution operator. J. Diff. Equat., 128 (1996), 300–308.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [Hö2]
    Hörmander, L. The Analysis of Linear Partial Differential Operators. Springer Verlag, New York, 1983–1985.Google Scholar
  26. [IY4]
    Imanuvilov, O., Yamamoto, M. Inverse boundary value problems for the Schrödinger equation in a cylindrical domain by partial data. Inverse Problems, 28 (2013), 045002.CrossRefzbMATHGoogle Scholar
  27. [IY5]
    Imanuvilov, O., Yamamoto, M. Uniqueness for Boundary Value Problems by Dirichlet-to Neumann Map on Subboundaries. Milan J. Math., 81 (2013), 187–258.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [I3]
    Inverse Problems: Theory and Applications Alessandrini, G., Uhlmann, G., editors. Contemp. Math., 333, AMS, Providence, RI, 2003.Google Scholar
  29. [Is4]
    Isakov, V. Inverse Source Problems. Math. Surveys and Monographs Series, Vol. 34, AMS, Providence, R.I., 1990.Google Scholar
  30. [Is7]
    Isakov, V. Completeness of products of solutions and some inverse problems for PDE. J. Diff. Equat., 92 (1991), 305–317.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [Is15]
    Isakov, V. Uniqueness of recovery of some quasilinear partial differential equations. Comm. Part. Diff. Equat., 26 (2001), 1947–1973.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [Is16]
    Isakov, V. On uniqueness in the inverse conductivity problem with local data. Inv. Prob. Imag., 1 (2007), 95–105.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [Is18]
    Isakov, V. Uniqueness of domains and general transmission conditions in inverse scattering. Comm. Math. Phys., 280 (2008), 843–858.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [IsLW]
    Isakov, V., Lai, R.-Y., Wang, J.-N. Increasing stability for the Conductivity and Attenuation Coefficients. SIAM J. Math. Anal, 48 (2016), 569–594.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [IsN]
    Isakov, V., Nachman, A. Global Uniqueness for a two-dimensional elliptic inverse problem. Trans. AMS, 347 (1995), 3375–3391.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [IsSy]
    Isakov, V., Sylvester, J. Global uniqueness for a semi linear elliptic inverse problem. Comm. Pure Appl. Math., 47 (1994), 1403–1410.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [IsW]
    Isakov, V., Wang, J.-N. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to Neumann map. Inv. Probl. Imag., 8 (2014), 1139–1150.CrossRefzbMATHGoogle Scholar
  38. [KS]
    Kenig, C., Salo, M. The Calderon problem with partial data on manifolds and applications. Analysis and PDE, 6 (2013), 2003–2048.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [KSU]
    Kenig, C., Sjöstrand, J., Uhlmann, G. The Calderon problem with partial data. Ann. Math., 165 (2007), 567–591.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [KnS]
    Knudsen K., Salo, M. Determining non smooth first order terms from partial boundary measurements Inv. Probl. Imag., 1 (2007), 349–369.Google Scholar
  41. [KoV1]
    Kohn, R., Vogelius, M. Determining Conductivity by Boundary Measurements. Comm. Pure Appl. Math., 37 (1984), 281–298.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [KoV2]
    Kohn, R., Vogelius, M. Determining Conductivity by Boundary Measurements, Interior Results, II. Comm. Pure Appl. Math., 38 (1985), 643–667.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [KoV3]
    Kohn, R., Vogelius, M. Relaxation of a variational method for impedance computed tomography. Comm. Pure Appl. Math., 40 (1987), 745–777.MathSciNetCrossRefzbMATHGoogle Scholar
  44. [Kru]
    Krupchyk, K. Inverse Transmission Problems for Magnetic Schrödinger Operators. Intern. Math. Res. Notices, 2014 (2012), 65–164.zbMATHGoogle Scholar
  45. [Kw]
    Kwon, K. Identification of anisotropic anomalous region in inverse problems. Inverse Problems, 20 (2004), 1117–1136.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [LU]
    Ladyzhenskaya, O.A., Ural’tseva, N.N. Linear and Quasilinear Elliptic Equations. Academic Press, New York-London, 1969.zbMATHGoogle Scholar
  47. [LaTU]
    Lassas, M., Taylor, M., Uhlmann, G. The Dirichlet-to-Neumann map for complete Riemannian manifolds with Boundary. Comm. Anal. Geom., 19 (2003), 207–221.MathSciNetCrossRefzbMATHGoogle Scholar
  48. [LeU]
    Lee, J., Uhlmann, G. Determining anisotropic real-analytic conductivities by boundary measurements. Comm. Pure Appl. Math., 52 (1989), 1097–1113.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [Ma]
    Mandache, N. Exponential instability in an inverse problem for the Schrödinger equation. Inverse Problems, 17 (2001), 1435–1444.MathSciNetCrossRefzbMATHGoogle Scholar
  50. [McL]
    McLean, W. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, 2000.zbMATHGoogle Scholar
  51. [Mi]
    Miranda, C. Partial Differential Equations of Elliptic Type. Ergebn. Math., Band 2, Springer-Verlag, 1970.Google Scholar
  52. [Mor]
    Morrey, C.B., Jr. Multiple Integrals in the Calculus of Variations. Springer, 1966.zbMATHGoogle Scholar
  53. [N1]
    Nachman, A. Reconstruction from boundary measurements. Ann. Math., 128 (1988), 531–577.MathSciNetCrossRefzbMATHGoogle Scholar
  54. [N2]
    Nachman, A. Global uniqueness for a two dimensional inverse boundary value problem. Ann. Math., 142 (1995), 71–96.MathSciNetzbMATHGoogle Scholar
  55. [NaSU]
    Nakamura, G., Sun, Z., Uhlmann, G. Global Identifiability for an Inverse Problem for the Schrödinger Equation in a Magnetic Field. Math. Ann., 303 (1995), 377–388.MathSciNetCrossRefzbMATHGoogle Scholar
  56. [NaU1]
    Nakamura, G., Uhlmann, G. Identification of Lame parameters by boundary observations. Amer. J. Math., 115 (1993), 1161–1189.MathSciNetCrossRefzbMATHGoogle Scholar
  57. [NaU2]
    Nakamura, G., Uhlmann, G. Inverse Problems at the boundary for an elastic medium. SIAM J. Math. Anal., 26 (1995), 263–279.MathSciNetCrossRefzbMATHGoogle Scholar
  58. [NaU3]
    Nakamura, G., Uhlmann, G. Global uniqueness for an inverse boundary value problems arising in elasticity. Invent. Math., 118 (1994), 457–474. Erratum, 152 (2003), 205–208.Google Scholar
  59. [OPS]
    Ola, P., Päivärinta, L., Somersalo, E. An Inverse Boundary Value Problem in Electrodynamics. Duke Math. J., 70 (1993), 617–653.MathSciNetCrossRefzbMATHGoogle Scholar
  60. [OS]
    Ola, P., Somersalo, E. Electromagnetic inverse problems and generalized Sommerfeld potentials. SIAM J. Appl. Math., 56 (1996), 1129–1145.MathSciNetCrossRefzbMATHGoogle Scholar
  61. [Ri]
    Riesz, M. Intégrales de Riemann-Liouville et potentiels. Acta Szeged, 9 (1938), 1–42.zbMATHGoogle Scholar
  62. [Sh]
    Sharafutdinov, V.A. Integral Geometry of Tensor Fields. VSP, Utrecht, 1994.CrossRefzbMATHGoogle Scholar
  63. [Su]
    Sun, Z. On a Quasilinear Inverse Boundary Value Problem. Math. Z., 221 (1996), 293–307.MathSciNetCrossRefzbMATHGoogle Scholar
  64. [SuU]
    Sun, Z., Uhlmann, G. Inverse problems in quasilinear anisotropic media. Amer. J. Math., 119 (1997), 771–799.MathSciNetCrossRefzbMATHGoogle Scholar
  65. [Sun]
    Sung, L. Y. An inverse scattering transform for the Davey-Stewartson II equations, I, II, III. J. Math. Anal. Appl., 183 (1994), 121–154, 289–325, 477–494.Google Scholar
  66. [Sy1]
    Sylvester, J. An Anisotropic Inverse Boundary Value Problem. Comm. Pure Appl. Math., 38 (1990), 201–232.MathSciNetCrossRefzbMATHGoogle Scholar
  67. [SyU1]
    Sylvester, J., Uhlmann, G. Global Uniqueness Theorem for an Inverse Boundary Problem. Ann. Math., 125 (1987), 153–169.MathSciNetCrossRefzbMATHGoogle Scholar
  68. [SyU2]
    Sylvester, J., Uhlmann, G. Inverse Boundary Value Problems at the Boundary - Continuous Dependence. Comm. Pure Appl. Math., 41 (1988) 197–221.MathSciNetCrossRefzbMATHGoogle Scholar
  69. [U1]
    Uhlmann, G. Electrical impedance tomography and Calderon’s problem. Inverse Problems, 25 (2009), 123011.MathSciNetCrossRefzbMATHGoogle Scholar
  70. [V]
    Vekua, I. N. Generalized analytic functions. Pergamon Press, London, 1962.zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Victor Isakov
    • 1
  1. 1.Department of Mathematics and StatisticsWichita State UniversityWichitaUSA

Personalised recommendations