Skip to main content

Elliptic Equations: Single Boundary Measurements

  • Chapter
  • First Online:
Inverse Problems for Partial Differential Equations

Part of the book series: Applied Mathematical Sciences ((AMS,volume 127 ))

  • 3292 Accesses

Abstract

In this chapter we consider the elliptic second-order differential equation \(Au = f\quad \mathrm{in}\;\varOmega,f = f_{0} -\sum \limits _{j=1}^{n}\partial _{j}f_{j}\) with the Dirichlet boundary data \(u = g_{0}\quad \mathrm{on}\;\partial \varOmega.\) We assume that A = div(−a∇) + b ⋅ ∇ + c with bounded and measurable coefficients a (symmetric real-valued (n × n) matrix) and complex-valued b and c in L (Ω). Another assumption is that A is an elliptic operator; i.e., there is ɛ 0 > 0 such that a(x)ξ ⋅ ξ ≥ ɛ 0 | ξ | 2 for any vector \(\xi \in \mathbb{R}^{n}\) and any x ∈ Ω. Unless specified otherwise, we assume that Ω is a bounded domain in \(\mathbb{R}^{n}\) with the boundary of class C 2. However, most of the results are valid for Lipschitz boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agmon, S., Douglis, A., Nirenberg, L. Estimates near the boundary for the solutions of elliptic differential equations satisfying general boundary values, I. Comm. Pure Appl. Math., 12 (1959), 623–727.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahlfors, L. Complex Analysis. McGraw-Hill, 1979.

    MATH  Google Scholar 

  3. Alessandrini, G. Remark on a paper of Bellout and Friedman. Boll. Unione Mat. Ital., (7) 3A (1989), 243–250.

    Google Scholar 

  4. Alessandrini, G. Examples of instability in inverse boundary value problems. Inverse Problems, 13 (1997), 887–897.

    Article  MathSciNet  MATH  Google Scholar 

  5. Alessandrini, G., Beretta, E., Rosset, E., Vessella, S. Optimal stability for Inverse Elliptic Boundary Value Problems. Ann. Sc. Norm. Sup. Pisa, 29 (2000), 755–806.

    MathSciNet  MATH  Google Scholar 

  6. Alessandrini, G., DiBenedetto, E. Determining 2-dimensional cracks in 3-dimensional bodies: uniqueness and stability. Indiana Univ. Math. J., 46 (1997), 1–83.

    MathSciNet  MATH  Google Scholar 

  7. Alessandrini, G., Isakov, V., Powell, J. Local Uniqueness in the Inverse Conductivity Problem with One Measurement. Trans. of AMS, 347 (1995), 3031–3041.

    Article  MathSciNet  MATH  Google Scholar 

  8. Alessandrini, G., Magnanini, R. The Index of Isolated Critical Points and Solutions of Elliptic Equations in the Plane. Ann. Sc., Norm. Pisa IV, 19 (1992), 567–591.

    Google Scholar 

  9. Alessandrini, G., Rosset, E., Seo, J.K. Optimal size estimates for the inverse conductivity with one measurement. Proc. AMS, 128 (1999), 53–64.

    Article  MathSciNet  MATH  Google Scholar 

  10. Alessandrini, G., Valenzuela, A.D. Unique determination of multiple cracks by two measurements. SIAM J. Control Opt., 34 (1996), 913–921.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ammari, H., Kang, H. Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory. Springer-Verlag, 2007.

    MATH  Google Scholar 

  12. Andrieux, S., Ben Abda, A. Identification de fissures planes par une donn’ee de bord unique: une procédé direct de localisation et d’identification. C.R. Acad. Sc. Paris, t.315. ser. 1 (1992), 1323–1328.

    Google Scholar 

  13. Bacchelli, V. Uniqueness for determination of unknown boundary and impedance with the homogeneous Robin condition. Inverse Problems, 25 (2009), 015004.

    Article  MathSciNet  MATH  Google Scholar 

  14. Beretta, E., Francini, E., Vogelius, M. Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis. J. Math. Pures Appl., 82 (2003), 1277–1301.

    Google Scholar 

  15. Beretta, E., Vogelius, M. An Inverse Problem originating from magnetohy-drodynamics. II, Domain with arbitrary corners. Asymptotic Anal., 11 (1995), 289–315.

    Google Scholar 

  16. Bryan, K., Vogelius, M. Effective behavior of clusters of microscopic cracks inside a homogeneous conductor. Asympt. Anal., 16 (1998), 141–179.

    MathSciNet  MATH  Google Scholar 

  17. Bukhgeim, A.L., Klibanov, M.V. Uniqueness in the large of a class of multidimensional inverse problems. Soviet Math. Dokl. 24 (1981), 244–247.

    Google Scholar 

  18. Burger, M., Engl, H.W., Markowich, P.A., Pietra, P. Identification of doping profiles in semiconductor devices. Inverse Problems, 17 (2001), 1765–1796.

    Article  MathSciNet  MATH  Google Scholar 

  19. Cherednichenko, V. Inverse logarithmic potential problem. VSP, 1996.

    MATH  Google Scholar 

  20. Demidov, A.S., Moussaoui, M. An inverse problem originating from magnetohydrodynamics. Inverse Problems, 20 (2004), 137–154.

    Article  MathSciNet  MATH  Google Scholar 

  21. Di Cristo, M., Rondi, L. Examples of exponential instability for inverse inclusion and scattering problems. Inverse Problems, 19 (2003), 685–701.

    Article  MathSciNet  MATH  Google Scholar 

  22. Elcrat, A., Isakov, V., Neculoiu, O. On finding a surface crack from boundary measurements. Inverse Problems, 11 (1995), 343–351.

    Article  MathSciNet  MATH  Google Scholar 

  23. Elcrat, A., Isakov, V., Kropf, E., Stewart, D. A stability analysis of the harmonic continuation. Inverse Problems, 28 (2012), 075016.

    Article  MathSciNet  MATH  Google Scholar 

  24. Eller, M. Identification of cracks in three-dimensional bodies by many boundary measurements. Inverse Problems, 12 (1996), 395–408.

    Article  MathSciNet  MATH  Google Scholar 

  25. Escauriaza, L., Fabes, E., Verchota, G. On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries. Proc. AMS., 115 (1992), 1069–1076.

    Article  MathSciNet  MATH  Google Scholar 

  26. Friedman, A., Isakov, V. On the Uniqueness in the Inverse Conductivity Problem with one Measurement. Indiana Univ. Math. J., 38 (1989), 553–580.

    MathSciNet  MATH  Google Scholar 

  27. Friedman, A., Vogelius, M. Determining Cracks by Boundary Measurements. Indiana Univ. Math. J., 38 (1989), 497–525.

    Article  MathSciNet  MATH  Google Scholar 

  28. Inverse Problems: Theory and Applications Alessandrini, G., Uhlmann, G., editors. Contemp. Math., 333, AMS, Providence, RI, 2003.

    Google Scholar 

  29. Isakov, V. Inverse Source Problems. Math. Surveys and Monographs Series, Vol. 34, AMS, Providence, R.I., 1990.

    Google Scholar 

  30. Isakov, V., Leung, S., Qian, J. A three-dimensional inverse gravimetry problem for ice with snow caps. Inv. Probl. Imag., 7 (2013), 523–545.

    Article  MathSciNet  MATH  Google Scholar 

  31. Isakov, V., Myers, J. On the inverse doping profile problem. Inv. Probl. Imag, 6 (2012), 465–486.

    Article  MathSciNet  MATH  Google Scholar 

  32. Isakov, V., Powell, J. On inverse conductivity problem with one measurement. Inverse Problems, 6 (1990), 311–318.

    Article  MathSciNet  MATH  Google Scholar 

  33. Ivanov, V.K. An integral equation of the inverse problem of the logarithmic potential. Dokl. Akad. Nauk SSSR, 105 (1955), 409–411.

    MathSciNet  Google Scholar 

  34. John, F. Partial Differential Equations. Springer, 1982.

    Book  MATH  Google Scholar 

  35. Kang, H., Seo, J.K. The layer potential technique for the inverse conductivity problem. Inverse Problems, 12 (1996), 267–278.

    Article  MathSciNet  MATH  Google Scholar 

  36. Kang, H., Seo, J.K. Inverse conductivity problem with one measurement: uniqueness of balls in \(\mathbb{R}^{3}\). SIAM J. Appl. Math., 59 (1999), 1533–1539.

    Article  MathSciNet  MATH  Google Scholar 

  37. Khaidarov, A. A class of inverse problems for elliptic equations. Diff. Equat., 23 (1987), 939–945.

    MathSciNet  MATH  Google Scholar 

  38. Kim, H., Seo, J.K. Unique determination of a collection of a finite number of cracks from two boundary measurements. SIAM J. Math. Anal., 27 (1996), 1336–1340.

    Article  MathSciNet  MATH  Google Scholar 

  39. Kinderlehrer, D., Stampacchia, G. An introduction to variational inequalities and their applications. Academic Press, 1980.

    MATH  Google Scholar 

  40. Klibanov, M.V., Timonov, A. Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. VSP, Utrecht, The Netherlands, 2004.

    Book  MATH  Google Scholar 

  41. Ladyzhenskaya, O.A., Ural’tseva, N.N. Linear and Quasilinear Elliptic Equations. Academic Press, New York-London, 1969.

    MATH  Google Scholar 

  42. Miranda, C. Partial Differential Equations of Elliptic Type. Ergebn. Math., Band 2, Springer-Verlag, 1970.

    Google Scholar 

  43. Morrey, C.B., Jr. Multiple Integrals in the Calculus of Variations. Springer, 1966.

    MATH  Google Scholar 

  44. Muskhelisvili, N.I. Singular Integral Equations. Noordhoff, Groningen, 1953.

    Google Scholar 

  45. Novikov, P.S. Sur le problème inverse du potentiel. Dokl. Akad. Nauk SSSR, 18 (1938), 165–168.

    MATH  Google Scholar 

  46. Powell, J. On a small perturbation in the two dimensional inverse conductivity problem. J. Math. Anal. Appl., 175 (1993), 292–304.

    Article  MathSciNet  MATH  Google Scholar 

  47. Prilepko, A.I. Über die Existenz and Eindeutigkeit von Lösungen inverser Probleme. Math Nach., 63 (1974), 135–153.

    Article  MATH  Google Scholar 

  48. Prilepko, A.I., Orlovskii, D.G., Vasin, I.A. Methods for solving inverse problems in mathematical physics. Marcel Dekker, New York-Basel, 2000.

    Google Scholar 

  49. Robbiano, L. Theorème d’Unicité Adapté au Contrôle des Solutions des Problèmes Hyperboliques. Comm. Part. Diff. Equat., 16 (1991), 789–801.

    Article  Google Scholar 

  50. Sakai, M. Regularity of a boundary having a Schwarz function. Acta Mathematica, 166 (1991), 263–287.

    Article  MathSciNet  MATH  Google Scholar 

  51. Seo, J.K. On uniqueness in the inverse conductivity problem. J. Fourier Anal. Appl., 2 (1996), 227–235.

    Article  MathSciNet  MATH  Google Scholar 

  52. Sokolowski, J., Zolesio, J.-P. Introduction to Shape Optimization. Berlin, Springer-Verlag, 1992.

    Book  MATH  Google Scholar 

  53. Vekua, I. N. Generalized analytic functions. Pergamon Press, London, 1962.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Isakov, V. (2017). Elliptic Equations: Single Boundary Measurements. In: Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol 127 . Springer, Cham. https://doi.org/10.1007/978-3-319-51658-5_4

Download citation

Publish with us

Policies and ethics