Skip to main content

Emerging Technologies of Hydrogels in Bioactive Compounds Delivery

  • Chapter
  • First Online:

Abstract

Polyphenols have attracted great interest due to the growing evidence of their beneficial effect on human health. Research on the application of polyphenols has increased especially in functional foods, nutraceutical, and pharmaceutical industries. However, one problem in human health is related to the effectiveness of polyphenols, which depends on preserving the stability, bioactivity, and bioavailability of the bioactive compounds. Additionally, the unpleasant taste of some phenolic compounds limits their use in pharmaceutical application. The encapsulation of polyphenols, instead of free compounds, can effectively help to solve some of the drawbacks. Hydrogels are very interesting biopolymers, emerging as technologies for encapsulation of polyphenols. Hydrogel classification, preparation, characterization, and measurements are reviewed. Several in vitro (preclinical trials) and in vivo studies have demonstrated multiple beneficial effects of polyphenols in prevention or in therapeutics of important pathologies, such as cardiovascular, thrombosis, atherosclerosis, inflammation, cancer, or neurodegenerative diseases. Current research, developments, and trends are also outlined in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Halim ES (2013) Amine salts-activated systems for one-step bleaching of cotton fabrics. Carbohydr Polym 96(1):64–70

    Google Scholar 

  • Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10:1–16

    CAS  Google Scholar 

  • Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: a review. J Adv Res 6:105–121. doi:10.1016/j.jare.2013.07.006

    Article  CAS  Google Scholar 

  • Ahmed O, ElzoghbyWM Samy N, Elgindy A (2012) Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 161:38–49

    Article  CAS  Google Scholar 

  • Amaro MI, Rocha J, Vila-Real H, Eduardo-Figueira M, Mota-Filipe H, Sepodes B, Ribeiro MH (2009) Anti-inflammatory activity of naringin and the biosynthesid naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice. Food Res Internat 42:1010–1017

    Article  CAS  Google Scholar 

  • Aquilano K, Baldelli S, Rotilio G, Ciriolo MR (2008) Role of nitric oxide synthases in Parkinson’s disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem Res 33:2416–2426

    Article  CAS  Google Scholar 

  • Bădescu V, Udrea LE, Rotariu O, Bădescu R, Apreotesei G (2008) On encapsulating and delivery of polyphenols in superparamagnetic polymer nanospheres. “Colloque Franco-Roumain de Chimie Appliquée – COFrRoCA 2008”, 25–29 June 2008, Bacău, Romania

    Google Scholar 

  • Baia X, Yeb Z, Lia Y, Zhoua L, Yanga L (2010) Preparation of crosslinked macroporous PVA foam carrier for immobilization of microorganisms. Process Biochem 45:60–66

    Article  CAS  Google Scholar 

  • Barras A, Mezzetti A, Richard A, Lazzaroni S, Roux S, Melnyk P Betbeder D, Monfilliette-Dupont N (2009) Formulation and characterization of polyphenol-loaded lipid nanocapsules. Int J Pharm 379:270–277

    Google Scholar 

  • Belitz H-D, Grosch W, Schieberle P (2007) Food chem, 4 edn. Springer Verlag Press, Munchen

    Google Scholar 

  • Bernardy N, Romio AP, Barcelos EI, Dal Pizzol C, Dora CL, Lemos-Senna E, Araujo PHH, Sayer C (2010) Nanoencapsulation of quercetin via miniemulsion polymerization. J Biomed Nanotechnol 6:181–186

    Article  CAS  Google Scholar 

  • Bilia AR, Isacchi B, Righeschi C, Guccione C, Bergonzi MC (2014) Flavonoids loaded in nanocarriers: an opportunity to increase oral bioavailability and bioefficacy. Food Nutr Sci 5:1212–1227. doi:10.4236/fns.2014.513132

    Article  CAS  Google Scholar 

  • Bogdan C (2016) Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 2015:1–18. doi:10.1016/j.it.2015.01.003

    Google Scholar 

  • Bolto B, Tran T, Hoang M, XieB X (2009) Crosslinked poly(vinyl alcohol) membranes. Prog Polym Sci 34:969–981

    Article  CAS  Google Scholar 

  • Braze CS, Peppas NA (2000) Modeling of drug release from swellable polymers. Eur J Pharm Biopharm 49:47–58

    Article  Google Scholar 

  • Bruneton J (2009) Pharmacognosie: Phytochimie. Paris, France, Plantes médicinales; Tec & Doc Lavoisier

    Google Scholar 

  • Bühler N, Haerri HP, Hofman M, Irrgang C, Mühlebach A, Müller B, Stockinger F, Nelfilcon A (1999) A new material for contact lenses. Chimia 53:269–274

    Google Scholar 

  • Buwalda SJ, Boere KW, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–273

    Google Scholar 

  • Cadenas E, Davies KJA (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biol Med 29:222–230

    Article  CAS  Google Scholar 

  • Cadena PG, Pereira MA, Cordeiro RBS, Cavalcantia IMF,  BB Neto, Pimentel MCCB, Lima-Filho JL, Silva VL, Santos-Magalhãesa, NS (2013) Nanoencapsulation of quercetin and resveratrol into elastic liposomes. Biochimica et Biophysica Acta (BBA) – Biomembranes 1828:309–316

    Google Scholar 

  • Caramori SS, Faria FN, Viana MP, Fernandes KF, Carvalho LB (2011) Trypsin immobilization on discs of polyvinyl alcohol glutaraldehyde/polyaniline composite. Mater Sci Eng C 31:252–257

    Article  CAS  Google Scholar 

  • Cassidy A, Rogers G, Peterson JJ, Dwyer J T, Lin H, Jacques PF (2015) Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am J Clin Nutr. doi:10.3945/ajcn.115.108555

  • Chien-Chi L, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58:1379–1408. doi:10.1016/j.addr.2006.09.004

    Article  CAS  Google Scholar 

  • Chiva-Blanch G, Urpi-Sarda M, Llorach R, Rotches-Ribalta M, Guillén M, Casas R, Arranz S, Valderas-Martinez P, Portoles O, Corella D, Tinahones F, Lamuela-Raventos RM, Andres-Lacueva C, Estruch R (2012) Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: a randomized clinical trial. Am J Clin Nutr 95(2):326–334

    Google Scholar 

  • Curin Y, Andriantsitohaina R (2005) Polyphenols as potential therapeutical agents against cardiovascular diseases. Pharmacol Rep 57:97–107

    Google Scholar 

  • D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R (2007) Polyphenols, dietary sources and bioavailability. Annali dell´Istituto Superiore di Sanità, 43:348–361

    Google Scholar 

  • Daniele MA, Adams AA, Naciri J, North SH, Ligler FS (2014) Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 35:1845–1856

    Article  CAS  Google Scholar 

  • Davis KA, Anseth KS (2002) Controlled release from crosslinked degradable networks. Crit Rev Ther Drug Carr Syst 19:385–423

    Article  CAS  Google Scholar 

  • Derek A, Martin B, Bolling W (2015) A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel diseases. Food Funct Roy Soc Chem 1–14. doi:10.1039/c5fo00202h

  • Droke EA, Hager KA, Lerner MR, Lightfoot SA, Stoecker BJ, Brackett DJ, Smith BJ (2007) Soy isoflavones avert chronic inflammation-induced bone loss and vascular disease. J Inflam 4:17

    Article  CAS  Google Scholar 

  • Duda‑Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr. doi:10.1007/s00394-015-0852-y

  • Duffy SJ, Keaney JF Jr, Holbrook M, Gokce N, Swerdloff PL, Frei B, Vita JA (2001) Short and long term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. J Am Heart Ass 104:151–156

    CAS  Google Scholar 

  • Ebara M, Kotsuchibbashi Y, Narain R, Idota N, Kim Y, Hoffman JM, Uto K, Aoyagi T (2014) Smart biomaterials, NIMS monographs. Springer, New York, pp 9–65

    Google Scholar 

  • Frisk T, Rydholm S, Liebmann T, Svahn HA, Stemme G, Brismar H (2007) A microfluidic device for parallel 3-D cell cultures in asymmetric environments. Electrophoresis 28(24):4705–4712

    Google Scholar 

  • Furtado A, Rosário PM, Calado ART, Alfaia AJI, Ribeiro MHL (2012a) High pressure studies on hesperitin production with hesperidinase free and immobilized in calcium alginate beads. High Pres Res 32:128–137. doi:10.1080/08957959.2012.664643

    Article  CAS  Google Scholar 

  • Furtado AFM, Nunes MAP, Ribeiro MHL (2012b) Hesperidinase encapsulation towards hesperitin production targeting improved bioavailability. J Mol Recogn 25:595–603. doi:10.1002/jmr.2224

    Article  CAS  Google Scholar 

  • Gali HU, Perchellet EM, Perchellet JP (1991) Inhibition of tumor promoter-induced ornithine decarboxylase activity by tannic acid and other polyphenols in mouse epidermis in vivo. Cancer Res 51(11):2820–2825

    Google Scholar 

  • Garcıa-Lafuente A, Guillamo E, Villares A, Rostagno MA, Martinez JA (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflam Res 58:537–552

    Article  CAS  Google Scholar 

  • Gatson JW, Liu MM, Abdelfattah K, Wigginton JG, Smith S, Wolf S, Minei JP (2013) Resveratrol decreases inflammation in the brain of mice with mild traumatic brain injury. J Trauma Acute Care Surg 74(2):470–474

    Google Scholar 

  • Georgetti SR, Casagrande R, Souza CRF, Oliveira WP, Fonseca MJV (2008) Spray drying of the soybean extract: effects on chemical properties and antioxidant activity. LWT-Food Sci Technol 41:1521–1527

    Article  CAS  Google Scholar 

  • Gojgini S, Tokatlian T, Segura T (2011) Utilizing cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels. Mol Pharm 8(5):1582–1591

    Google Scholar 

  • González R, Ballester I, López-Posadas R, Suárez MD, Zarzuelo A, Martínez-Augustin O, Sánchez MF (2011) Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 51:331–362

    Article  CAS  Google Scholar 

  • Grassi D, Mulder TP, Draijer R, Desideri G, Molhuizen HO, Ferri C (2009) Black tea consumption dose-dependently improves flow-mediated dilation in healthy males. J Hypertens 27:774–781

    Article  CAS  Google Scholar 

  • Grassi D, Desideri G, Ferri C (2010) Flavonoids: antioxidants against atherosclerosis. Nutrients 2:889–902

    Article  CAS  Google Scholar 

  • Grosová Z, Rosenberg M, Rebroš M, Šipocz M, Sedláčková B (2008) Entrapment of β-galactosidase in polyvinylalcohol hydrogel. Biotechnol Letters 30:763–767

    Article  CAS  Google Scholar 

  • Hamaguchi T, Ono K, Yamada M (2010) Curcumin and Alzheimer’s disease. CNS Neurosci Ther 16:285–297

    Article  CAS  Google Scholar 

  • Han N, Johnson J, Lannutti JJ, Winter JO (2012) Hydrogel–electrospun fiber composite materials for hydrophilic protein release. J Control Release 158:165–170

    Google Scholar 

  • Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36

    Google Scholar 

  • Hodgson JM, Puddey IB, Burke V, Watts GF, Beilin LJ (2002) Regular ingestion of black tea improves brachial artery vasodilator function. Clin Sci 102:195–201

    Article  Google Scholar 

  • Hou W, Zhang L, Long Y (2011) Study on the wettability of polyethylene film fabricated at lower temperature. J Colloid Interface Sci 362(2):629–632

    Google Scholar 

  • Huang Q (2009) Micro/Nanoencapsulation of active food ingredients. Intern J Green Nanotechnol Phys Chem 1:P72–P96

    Google Scholar 

  • Huang Y, Zhang B, Xu G, Hao W (2013) Swelling behaviours and mechanical properties of silk fibroin–polyurethane composite hydrogels. Compos Sci Technol 84:15–22

    Article  CAS  Google Scholar 

  • Jamileh M, Lakkis (2007) Encapsulation and controlled release: technologies in food systems. Blackwell Publishing, New York

    Google Scholar 

  • Kang KS, Lee S-I, Hong JM, Lee JW, Cho HY, Son JH, Paek SH, Cho D-W (2014) Hybrid scaffold composed of hydrogel/3D-framework and its application as a dopamine delivery system. J Control Release 175:10–16

    Google Scholar 

  • Kawaguchi K, Matsumoto T, Kumazawa (2011) Effects of antioxidant polyphenols on TNF-alpha-related diseases. Curr Top Med Chem 11:1767–1779

    Article  CAS  Google Scholar 

  • Kim J, Choi H et al (2008) Polyvinyl alcohol as a viable membrane in artificial tissue design and development. Intern J Pharm 359:79–86

    Article  CAS  Google Scholar 

  • Kita M, Ogura Y, Honda Y, Hyon SH, Cha W 2nd, Ikada Y (1990) Evaluation of polyvinyl alcohol hydrogel as a soft contact lens material. Graefes Arch Clin Exp Ophthalmol 228(6):533–537

    Google Scholar 

  • Kobayashy M, Toguchida J, Masanori OJ (2001) Development of the shields for tendon injury repair using polyvinyl alcohol—hydrogel (PVA-H). J Biom Mat Res 58:344–351

    Article  Google Scholar 

  • Kosaraju SL, D’Ath L, Lawrence A (2006) Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohydr Polym 64:163–167

    Article  CAS  Google Scholar 

  • Kosaraju SL, Labbett D, Emin M, Konczak I, Lundin L (2008) Delivering polyphenols for healthy ageing. Nutr Diet 65:S48–S52

    Article  Google Scholar 

  • Krishnaiah D, Sarbatly R, Mohan Rao SR, Nithyanand RR (2009) Optimal operating conditions of spray dried noni fruit extract using κ-carrageenan as adjuvant. J Appl Sci 9:3062–3067

    Article  CAS  Google Scholar 

  • Ku TH, Lin AC (2005) Rheological properties of thermoplastic polyvinyl alcohol and polypropylene blend melts in capillary extrusions. J Polym Res 12:23–29

    Article  CAS  Google Scholar 

  • Lau FC, Bielinski DF, Joseph JA (2007) Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J Neurosci 85:1010–1017

    CAS  Google Scholar 

  • Lee J-S, Kim GH, Lee HG (2010) Characteristics and antioxidant activity of elsholtzia splendens extract-loaded nanoparticles. J Agric Food Chem 58:3316–3321

    Article  CAS  Google Scholar 

  • Leopoldini M, Russo N, Toscano M (2011) The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 125:288–306

    Article  CAS  Google Scholar 

  • Li N, Sip C, Folch A (2007) Microfluidic chips controlled with elastomeric microvalve arrays. J Vis Exp (8):296

    Google Scholar 

  • Liang J, Li F, Fang Y, Yang W, An X, Zhao L, Xin Z, Cao L, Hu Q (2011) Synthesis, characterization and cytotoxicity studies of chitosan-coated tea polyphenols nanoparticles. Colloids Surf B Biointerf 82:297–301

    Article  CAS  Google Scholar 

  • Livney YD (2010) Milk proteins as vehicles for bioactives. Curr Opin Colloid Int Sci 15:73–83

    Article  CAS  Google Scholar 

  • Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    CAS  Google Scholar 

  • Manach C, Mazur A, Scalbert A (2005) Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 16:77–84

    Article  CAS  Google Scholar 

  • Mandel S, Youdim MB (2004) Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radical Biol Med 37:304–317

    Article  CAS  Google Scholar 

  • Mileo AM, Miccadei S (2016) Polyphenols as modulator of oxidative stress in cancer disease: new therapeutic strategies. Oxidative Med Cell Longevity. Article ID 6475624, 1–17. doi.org/10.1155/2016/6475624

  • Miura Y, Chiba T, Tomita I, Koizumi H, Miura S, Umegaki K, Hara Y, Ikeda M, Tomita T (2001) Tea catechins prevent the development of atherosclerosis in ApoproteinE–deficient mice. J Nutr 131:27–32

    CAS  Google Scholar 

  • Mounsey RB, Teismann P (2012) Chelators in the treatment of iron accumulation in Parkinson’s disease. Int J Cell Biol. Article ID 983245, 12 pages. doi:10.1155/2012/983245

  • Mukamal KJ, Maclure M, Muller JE, Sherwood JB, Mittleman MA (2002) Tea consumption and mortality after acute myocardial infarction. J Am Heart Ass 105:2476–2481

    Google Scholar 

  • Munin A, Edwards-Lévy F (2011) Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics 3:793–829. doi:10.3390/pharmaceutics3040793

    Article  CAS  Google Scholar 

  • Nassan CM, Peppas NA (2000) Biopolymers-PVA hydrogels. Anionic Polymerisation Nanocomposites Adv Polym Sci 135:228

    Google Scholar 

  • Navarro-Núñez L, Lozano ML, Palomo M, MartÍnez C, Vicente V, Castillo J, Benavente-GarcÍa O, Diaz-Ricart M, Escolar G, Rivera J (2008) Apigenin inhibits platelet adhesion and thrombus formation and synergizes with aspirin in the suppression of the arachidonic acid pathway. J Agric Food Chem 56(9):2970–2976

    Google Scholar 

  • Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B (2011) An overview of encapsulation technologies for food applications. Procedia Food Sci 1:1806–1815

    Article  CAS  Google Scholar 

  • Nizam HM, Abd Alla SG, El-Naggar AWM (2007) J Macromol Sci A, 44:291–297

    Google Scholar 

  • Nunes M, Vila-Real H, Fernandes PCB, Ribeiro MH (2010) Immobilization of naringinase in PVA–alginate matrix using an innovative technique. Appl Biochem Biotechnol 160:2129–2147

    Article  CAS  Google Scholar 

  • Nunes MAP, Fernandes PCB, Ribeiro MHL (2012) High-affinity water-soluble system for efficient naringinase immobilization in polyvinyl alcohol-dimethyl sulfoxide lens-shaped particles. J Mol Recogn 25:580–594. doi:10.1002/jmr.2197

    Article  CAS  Google Scholar 

  • Nunes MAP, Rosa ME, Fernandes PCB, Ribeiro MHL (2014) Operational stability of naringinase PVA lens-shaped microparticles in batch stirred reactors and mini packed bed reactors-one step closer to industry. Biores Technol 164:362–370

    Article  CAS  Google Scholar 

  • Olejnik A, Rychlik J, Kidon M et al (2016) Antioxidant effects of gastrointestinal digested purple carrot extract on the human cells of colonic mucosa. Food Chem 190:1069–1077. doi:10.1016/j.foodchem.2015.06.080

    Article  CAS  Google Scholar 

  • Osiecki H (2004) The role of chronic inflammation in cardiovascular disease and its regulation by nutrients. Altern Med Rev 9:32–53

    Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longevity 2:270–278

    Article  Google Scholar 

  • Peppas NA, Miller DR (1986) Bulk characterization and scanning electron microscopy of hydrogels of P(VA-co-NVP). Biomaterials 7(5):329–339

    Google Scholar 

  • Peppas NA, Keys KB, Torres-Lugo M, Lowman AM (1999) Poly(ethylene glycol)-containing hydrogels in drug delivery. J Controll Release 62:81–87

    Article  CAS  Google Scholar 

  • Peppas NA, Bures P, Leobandung W, Ichikawa H (2000a) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  Google Scholar 

  • Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000b) Physicochemical, foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29

    Article  CAS  Google Scholar 

  • Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mat 18:1345–1380

    Article  CAS  Google Scholar 

  • Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681. doi:10.1021/bm901254n

    Article  CAS  Google Scholar 

  • Pojer E, Mattivi F, Johnson D, Stockley CS (2013) The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food Saf 12:483–508. doi:10.1111/1541-4337.12024

    Article  CAS  Google Scholar 

  • Queen BL, Tollefsbol TO (2010) Polyphenols and aging. Curr Aging Sci 3:34–42

    Article  CAS  Google Scholar 

  • Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharm 72:1439–1452

    Article  CAS  Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market

    Google Scholar 

  • Ribeiro IA, Ribeiro MHL (2008) Kinetic modelling of naringin hydrolysis using a bitter sweet alfa-rhamnopyranosidase immobilized in k-carrageenan. J Mol Catal B Enzym 51:10–18

    Article  CAS  Google Scholar 

  • Ribeiro IA, Rocha J, Sepodes B, Mota-Filipe H, Ribeiro MH (2008) Effect of naringin enzymatic hydrolysis towards naringenin on the anti-inflammatory activity of both compounds. J Mol Catal B Enzym 52–53:13–18

    Article  CAS  Google Scholar 

  • Ribeiro MH, Barateiro A, Vila-Real H, Fernandes A, Brites D (2009) Anti-inflammatory effect of naringin and naringenin on TNF-α secretion in cultured cortical astrocytes after stimulation with LPS. New Biotechnol 25:S10–S11

    Article  Google Scholar 

  • Ribeiro MH, Afonso C, Vila-Real H, Alfaia A, Ferreira L (2010) Contribution of response surface methodology to the modeling of naringin hydrolysis by naringinase Ca-alginate beads under high pressure. LWT-Food Sci Technol 43:482–487

    Article  CAS  Google Scholar 

  • Rieder SA, Nagarkatti P, Nagarkatti M (2012) Multiple anti-inflammatory pathways triggered by resveratrol lead to amelioration of staphylococcal enterotoxin B-induced lung injury. Br J Pharmacol 167(6):1244–1258

    Google Scholar 

  • Rocha S, Generalov R, Pereira MDC, Peres I, Juzenas P, Coelho MAN (2011) Epigallocatechin gallate-loaded polysaccharide nanoparticles for prostate cancer chemoprevention. Nanomedicine 6:79–87

    Article  CAS  Google Scholar 

  • Rocha-Guzmán NE, Gallegos-Infante JA, González-Laredo RF, Harte F, Medina-Torres L, Ochoa-Martínez LA, Soto-García M (2010) Effect of high-pressure homogenization on the physical and antioxidant properties of quercus resinosa infusions encapsulated by spray-drying. J Food Sci 75:N57–N61

    Article  CAS  Google Scholar 

  • Romier B, Schneider Y, Larondelle Y, During A (2009) Dietary polyphenols can modulate the intestinal inflammatory response. Nutr Rev 67:363–378

    Article  Google Scholar 

  • Rossi L, Mazzitelli S, Arciello M, Capo CR, Rotilio G (2008) Benefits from dietary polyphenols for brain aging and Alzheimer’s disease. Neurochem Res 33:2390–2400

    Article  CAS  Google Scholar 

  • Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of Drugs and nanoparticles to tumors. J Cell Biol 188:759–768. doi:10.1083/jcb.200910104

  • Sahil J, Somani KP, Modi AS, Majumdar Bhakti N, Sadarani (2015) Phytochemicals and their potential usefulness in inflammatory bowel disease. Phytother Res 29:339–350. doi:10.1002/ptr.5271

    Article  CAS  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutrit 130:2073S–2085S

    CAS  Google Scholar 

  • Scalbert A, Johnson IT, Saltmarsh M (2005) Polyphenols: antioxidants and beyond. Am J Clin Nutrit 8:215S–217S

    Google Scholar 

  • Schmedlen RH, Masters KS, West JL (2002) Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23:4325–4332

    Article  CAS  Google Scholar 

  • Schuurman W, Khristov V, Pot MW, Weeren PR, Dhert WJA, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3:021001

    Article  CAS  Google Scholar 

  • Shay J, Elbaz HA, Icksoo L, Zielske SP, Malek MH, Hüttemann M (2015) Molecular mechanisms and therapeutic effects of (−)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxidative Med Cell Longevity. Article ID 181260, 1–13. doi:10.1155/2015/181260

  • Shutava TG, Balkundi SS, Lvov YM (2009) (-)-Epigallocatechin gallate/gelatin layer-by-layer assembled films and microcapsules. J Colloid Interf Sci 330:276–283

    Article  CAS  Google Scholar 

  • Siepmann J (2012) Fundamentals and applications of controlled release drug delivery, advances in delivery science and technology. CRC Press, NY, USA, pp 19–43

    Google Scholar 

  • Sikora E, Scapagnini G, Barbagallo M (2010) Curcumin, inflammation, ageing and age-related diseases. Immun Ageing 7:1–4

    Article  CAS  Google Scholar 

  • Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD (2010) Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm 389:207–212

    Article  CAS  Google Scholar 

  • Spencer JPE, El Mohsen MA, Minihane A, Mathers JC (2008) Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutrit 99:12–22

    CAS  Google Scholar 

  • Sun AY, Wang Q, Simonyi A, Sun GY (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 41:375–383

    Article  CAS  Google Scholar 

  • Suzuki J, Isobe M, Morishita R, Nagai R (2009) Tea polyphenols regulate key mediators on inflammatory cardiovascular diseases. Mediat Inflam ID 494928

    Google Scholar 

  • Syed K, Gulrez H, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Angelo C (ed) Progress in molecular and environmental bioengineering: from analysis and modeling to technology applications, pp 117–150

    Google Scholar 

  • Takei T, Ikedaa K, Ijimaa H, Kawakami K (2011) Fabrication of poly(vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization. Process Biochem 46:566–571

    Article  CAS  Google Scholar 

  • Tan H, Luan H, Hu Y, Hu X (2013) Covalently crosslinked chitosan–poly(ethylene glycol) hybrid hydrogels to deliver insulin for adipose-derived stem cells encapsulation. Macromol Res 21:392–399

    Article  CAS  Google Scholar 

  • Tang X, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr Polym 85:7–16

    Article  CAS  Google Scholar 

  • Tomé-Carneiro J, Gonzálvez M, Larrosa M, Yáñez-Gascón MJ, García-Almagro FJ, Ruiz-Ros JA, Tomás-Barberán FA, García-Conesa MT, Espín JC (2013) Resveratrol in primary and secondary prevention of cardiovascular disease: a dietary and clinical perspective. Ann N Y Acad Sci 1290:37–51

    Google Scholar 

  • Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246

    Article  CAS  Google Scholar 

  • Ullah F, Othman MBH, Javed F, Ahmada Z, Hazizan A (2015) Classification, processing and application of hydrogels: a review. Mat Sci Eng C 57:414–433. doi:10.1016/j.msec.2015.07.053

    Article  CAS  Google Scholar 

  • Vauzour D, Vafeiadou K, Mateos AR, Rendeiro C, Spencer JPE (2008) The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr 3:115–126

    Article  CAS  Google Scholar 

  • Vila-Real H, Alfaia AJ, Rosa ME, Calado AR, Ribeiro MHL (2010a) Improvement of activity and stability of soluble and sol-gel immobilized naringinase in co-solvent systems. J Mol Catal B Enzym 65:91–101

    Article  CAS  Google Scholar 

  • Vila-Real H, Alfaia AJ, Rosa ME, Calado AR, Ribeiro MHL (2010b) An innovative sol–gel naringinase bioencapsulation process for glycosides hydrolysis. Process Biochem 45:841–850

    Article  CAS  Google Scholar 

  • Vila-Real H, Alfaia AJ, Rosário PMB, Calado ART, Ribeiro MHL (2011a) Enzymatic synthesis of the flavone glucosides, prunin and isoquercetin, and the aglycones, naringenin and quercetin, with selective α-L-rhamnosidase and β-D-glucosidase activities of naringinase. Enz Res Article ID 692618:1–11

    Article  CAS  Google Scholar 

  • Vila-Real H, Alfaia AJI, Rosa JN, Gois PMP, Rosa ME, Calado ART, Ribeiro MHL (2011b) alfa-Rhamnosidase and beta-glucosidase expressed by naringinase immobilized within new ionic liquid sol-gel matrices: activity and stability studies. J Biotechnol 4:147–158

    Article  CAS  Google Scholar 

  • Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P (2008) Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci 9:1–5

    Article  CAS  Google Scholar 

  • Visioli F, La Lastra C, Andres-Lacueva C et al (2011) Polyphenols and human health: a prospectus. Crit Rev Food Sci Nutr 51:524–546

    Article  CAS  Google Scholar 

  • Vita JA (2005) Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr 8:292S–297S

    Google Scholar 

  • Wang Z, Huang Y, Zou J, Cao K, Xu Y, Wu JM (2002) Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. Int J Mol Med 9:77–79

    Google Scholar 

  • Weggemans RM, Trautwein EA (2003) Relation between soy-associated isoflavones and LDL and HDL cholesterol concentrations in humans: a meta-analysis. Eur J Clin Nutr 57:940–946

    Article  CAS  Google Scholar 

  • Wendeburg L, Oliveira ACP, Bhatia HS, Candelario-Jalil E, Fiebich BL (2009) Resveratrol inhibits prostaglandin formation in IL-1β-stimulated SK-N-SH neuronal cells. J Neuroinflam 6:1–8

    Article  CAS  Google Scholar 

  • Wright B (2013) Forging a modern generation of polyphenol-based therapeutics. Br J Pharmacol 169:844–847. doi:10.1111/bph.12195

    Article  CAS  Google Scholar 

  • Wright B, Moraes L, Kemp F, Mullen W, Crozier A, Lovegrove JA, Gibbins JM (2010) A structural basis for the inhibition of collagen-stimulated platelet function by quercetin and structurally related flavonoids. Br J Pharmacol 159:1312–1325. doi:10.1111/j.1476-5381.2009.00632.x

    Article  CAS  Google Scholar 

  • Yoshida Y, Shioi T, Izumi T (2007) Resveratrol ameliorates experimental autoimmune myocarditis. Circ J 71:397–404

    Article  CAS  Google Scholar 

  • Yusong P, Dangsheng X, Xiaolin CJ (2007) Mechanical properties of nanohydroxyapatite reinforced poly(vinyl alcohol) gel composites as biomaterial. J Mat Sci 42(13):5129–5134

    Article  CAS  Google Scholar 

  • Zhang L, Mou D, Du Y (2007) Procyanidins: extraction and micro-encapsulation. J Sci Food Agric 87:2192–2197

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Henriques L. Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ribeiro, M.H.L. (2017). Emerging Technologies of Hydrogels in Bioactive Compounds Delivery. In: Puri, M. (eds) Food Bioactives. Springer, Cham. https://doi.org/10.1007/978-3-319-51639-4_10

Download citation

Publish with us

Policies and ethics