Skip to main content

Glucosinolates and Respective Derivatives (Isothiocyanates) from Plants

  • Chapter
  • First Online:

Abstract

Glucosinolates (GLs) comprise a distinctive group of bioactive compounds exhibiting a wide range of activities in plants, as their major defense system, as well as in humans in many ways. This chapter discusses the biosynthesis and functionality (e.g., chemopreventative and antimicrobial activity) of GLs. In addition, the effect of processing (e.g., enzymatic degradation and post-harvesting) on the content and stability of GLs is denoted. Finally, an insight of different methods that can be applied for the extraction of GLs is discussed. GLs can lose their beneficial properties and transform into antinutrients depending on the processing conditions. For this reason, this chapter focuses also on emerging technologies (e.g., high-pressure processing , ultrasound and microwave extraction, pulsed electric field, and supercritical fluids extraction) that promise mild treatment and preservation of GLs during processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguilo-Aguayo I, Suarez M, Plaza L, Hossain MB, Brunton N, Lyng JG, Rai DK (2015) Optimization of pulsed electric field pre-treatments to enhance health-promoting glucosinolates in broccoli flowers and stalk. J Sci Food Agric 95:1868–1875. doi:10.1002/jsfa.6891

    Article  CAS  Google Scholar 

  • Aires A, Carvalho R, Rosa E (2012) Glucosinolate composition of Brassica is affected by postharvest, food processing and myrosinase activity. J Food Process Preserv 36:214–224. doi:10.1111/j.1745-4549.2011.00581.x

    Article  CAS  Google Scholar 

  • Alvarez-Jubete L, Valverde J, Patras A, Mullen AM, Marcos B (2014) Assessing the impact of High-Pressure processing on selected physical and biochemical attributes of white cabbage (Brassica oleracea L. var. capitata alba). Food Bioprocess Technol 7:682–692. doi:10.1007/s11947-013-1060-5

    Article  CAS  Google Scholar 

  • Angelino D, Jeffery E (2014) Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: Focus on glucoraphanin. J Funct Foods 7:67–76. doi:10.1016/j.jff.2013.09.029

    Article  CAS  Google Scholar 

  • Ares AM, Nozal MJ, Bernal J (2013) Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J Chromatogr A 1313:78–95. doi:10.1016/j.chroma.2013.07.051

    Article  CAS  Google Scholar 

  • Ares AM, Nozal MJ, Bernal JL, Bernal J (2014a) Effect of temperature and light exposure on the detection of total intact glucosinolate content by LC-ESI-MS in broccoli leaves. Food Anal Methods 7:1687–1692. doi:10.1007/s12161-014-9806-x

    Article  Google Scholar 

  • Ares AM, Nozal MJ, Bernal JL, Bernal J (2014b) Optimized extraction, separation and quantification of twelve intact glucosinolates in broccoli leaves. Food Chem 152:66–74. doi:10.1016/j.foodchem.2013.11.125

    Article  CAS  Google Scholar 

  • Barba FJ, Galanakis CM, Esteve MJ, Frigola A, Vorobiev E (2015) Potential use of pulsed electric technologies and ultrasounds to improve the recovery of high-added value compounds from blackberries. J Food Eng 167:38–44

    Article  CAS  Google Scholar 

  • Butz P, Edenharder R, García AF, Fister H, Merkel C, Tauscher B (2002) Changes in functional properties of vegetables induced by high pressure treatment. Food Res Int 35:295–300. doi:10.1016/s0963-9969(01)00199-5

    Article  CAS  Google Scholar 

  • Campos D, Chirinos R, Barreto O, Noratto G, Pedreschi R (2013) Optimized methodology for the simultaneous extraction of glucosinolates, phenolic compounds and antioxidant capacity from maca (Lepidium meyenii). Ind Crops Prod 49:747–754. doi:10.1016/j.indcrop.2013.06.021

    Article  CAS  Google Scholar 

  • Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: Bioavailability in food and significance for human health. Phytochem Rev 7:213–229. doi:10.1007/s11101-007-9072-2

    Article  CAS  Google Scholar 

  • Chaisamlitpol S, Hiranvarachat B, Srichumpoung J, Devahastin S, Chiewchan N (2014) Bioactive compositions of extracts from cabbage outer leaves as affected by drying pretreatment prior to microwave-assisted extraction. Sep Purif Technol 136:177–183. doi:10.1016/j.seppur.2014.09.002

    Article  CAS  Google Scholar 

  • Cools K, Terry LA (2012) Comparative study between extraction techniques and column separation for the quantification of sinigrin and total isothiocyanates in mustard seed. J Chromatogr B Anal Technol Biomed Life Sci 901:115–118. doi:10.1016/j.jchromb.2012.05.027

    Article  CAS  Google Scholar 

  • Dekker M, Verkerk R, Jongen WMF (2000) Predictive modelling of health aspects in the food production chain: a case study on glucosinolates in cabbage. Trends Food Sci Technol 11:174–181. doi:10.1016/s0924-2244(00)00062-5

    Article  CAS  Google Scholar 

  • Deng Q et al (2015) The effects of conventional and non-conventional processing on glucosinolates and Its derived forms, isothiocyanates: extraction, degradation, and applications. Food Eng Rev 7:357–381. doi:10.1007/s12393-014-9104-9

    Article  CAS  Google Scholar 

  • Dufour V, Stahl M, Baysse C (2015) The antibacterial properties of isothiocyanates. Microbiol Sgm 161:229–243. doi:10.1099/mic.0.082362-0

    Article  CAS  Google Scholar 

  • Dujmic F, Brnčic M, Karlovic S, Bosiljkov T, Ježek D, Tripalo B, Mofardin I (2013) Ultrasound-assisted infrared drying of pear slices: textural issues. J Food Process Eng 36:397–406. doi:10.1111/jfpe.12006

    Article  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51. doi:10.1016/s0031-9422(00)00316-2

    Article  CAS  Google Scholar 

  • Frandsen HB et al (2014) Effects of novel processing techniques on glucosinolates and membrane associated myrosinases in broccoli. Pol J Food Nutrition Sci 64:17–25. doi:10.2478/pjfns-2013-0005

    CAS  Google Scholar 

  • Galanakis CM (2012) Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci Technol 26:68–87. doi:10.1016/j.tifs.2012.03.003

    Article  CAS  Google Scholar 

  • Galanakis CM (2013) Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food Bioprod Process 91:575–579

    Article  CAS  Google Scholar 

  • Galanakis CM (2015) Separation of functional macromolecules and micromolecules: from ultrafiltration to the border of nanofiltration. Trends Food Sci Technol 42:44–63

    Article  CAS  Google Scholar 

  • Galanakis CM, Schieber A (2014) Editorial. Special Issue on recovery and utilization of valuable compounds from food processing by-products. Food Res Int 65:230–299

    Google Scholar 

  • Galanakis CM, Tornberg E, Gekas V (2010a) Clarification of high-added value products from olive mill wastewater. J Food Eng 99:190–197

    Article  CAS  Google Scholar 

  • Galanakis CM, Tornberg E, Gekas V (2010b) Recovery and preservation of phenols from olive waste in ethanolic extracts. J Chem Technol Biotechnol 85:1148–1155

    Article  CAS  Google Scholar 

  • Galanakis CM, Tornberg E, Gekas V (2010c) The effect of heat processing on the functional properties of pectin contained in olive mill wastewater. LWT—Food Sci Technol 43:1001–1008

    CAS  Google Scholar 

  • Galanakis CM, Goulas V, Tsakona S, Manganaris GA, Gekas V (2013a) A knowledge base for the recovery of natural phenols with different solvents. Int J Food Prop 16:382–396

    Article  CAS  Google Scholar 

  • Galanakis CM, Markouli E, Gekas V (2013b) Fractionation and recovery of different phenolic classes from winery sludge via membrane filtration. Sep Purif Technol 107:245–251

    Article  CAS  Google Scholar 

  • Galanakis CM, Chasiotis S, Botsaris G, Gekas V (2014) Separation and recovery of proteins and sugars from Halloumi cheese whey. Food Res Int 65:477–483

    Article  CAS  Google Scholar 

  • Galanakis CM, Patsioura A, Gekas V (2015) Enzyme kinetics modeling as a tool to optimize food biotechnology applications: a pragmatic approach based on amylolytic enzymes. Crit Rev Food Sci Technol 55:1758–1770

    Article  CAS  Google Scholar 

  • Ghawi SK, Methven L, Rastall RA, Niranjan K (2012) Thermal and high hydrostatic pressure inactivation of myrosinase from green cabbage: a kinetic study. Food Chem 131:1240–1247. doi:10.1016/j.foodchem.2011.09.111

    Article  CAS  Google Scholar 

  • Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2003) A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol Biomark Prev 12:1403–1409

    CAS  Google Scholar 

  • Gupta P, Wright SE, Kim S-H, Srivastava SK (2014) Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanismson. Biochimica Et Biophysica Acta-Reviews Cancer 1846:405–424. doi:10.1016/j.bbcan.2014.08.003

    Article  CAS  Google Scholar 

  • Hall MKD, Jobling JJ, Rogers GS (2014) Variations in the most abundant types of glucosinolates found in the leaves of baby leaf rocket under typical commercial conditions. J Sci Food Agric. doi:10.1002/jsfa.6774

    Google Scholar 

  • Hanschen FS, Lamy E, Schreiner M, Rohn S (2014) Reactivity and stability of glucosinolates and their breakdown products in foods. Angewandte Chemie-International Edition 53:11430–11450. doi:10.1002/anie.201402639

    Article  CAS  Google Scholar 

  • Heng WW, Xiong LW, Ramanan RN, Hong TL, Kong KW, Galanakis CM, Prasad KN (2015) Two level factorial design for the optimization of phenolics and flavonoids recovery from palm kernel by-product. Ind Crops Prod 63:238–248

    Article  Google Scholar 

  • Hennig K, Verkerk R, Bonnema G, Dekker M (2012) Rapid Estimation of glucosinolate thermal degradation rate constants in leaves of Chinese Kale and Broccoli (Brassica oleracea) in two seasons. J Agric Food Chem 60:7859–7865. doi:10.1021/jf300710x

    Article  CAS  Google Scholar 

  • Hennig K, Verkerk R, van Boekel M, Dekker M, Bonnema G (2014) Food science meets plant science: a case study on improved nutritional quality by breeding for glucosinolate retention during food processing. Trends Food Sci Technol 35:61–68. doi:10.1016/j.tifs.2013.10.006

    Article  CAS  Google Scholar 

  • Herr I, Büchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treat Rev 36:377–383. doi:10.1016/j.ctrv.2010.01.002

    Article  CAS  Google Scholar 

  • Herzallah S, Holley R (2012) Determination of sinigrin, sinalbin, allyl- and benzyl isothiocyanates by RP-HPLC in mustard powder extracts. LWT—Food Sci Technol 47:293–299. doi:10.1016/j.lwt.2012.01.022

    CAS  Google Scholar 

  • Hodges DM, Munro KD, Forney CF, McRae KB (2006) Glucosinolate and free sugar content in cauliflower (Brassica oleracea var. botrytis cv. Freemont) during controlled-atmosphere storage. Postharvest Biol Technol 40:123–132. doi:10.1016/j.postharvbio.2005.12.019

    Article  CAS  Google Scholar 

  • Huang HW, Hsu CP, Yang BB, Wang CY (2013) Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci Technol 33:54–62. doi:10.1016/j.tifs.2013.07.001

    Article  CAS  Google Scholar 

  • Ishida M, Hara M, Fukino N, Kakizaki T, Morimitsu Y (2014) Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci 64:48–59. doi:10.1270/jsbbs.64.48

    Article  CAS  Google Scholar 

  • Jager H (2012) Process performance analysis of pulsed electric field (PEF) food applications. Technological University of Berlin

    Google Scholar 

  • Jia CG, Xu CJ, Wei J, Yuan J, Yuan GF, Wang BL, Wang QM (2009) Effect of modified atmosphere packaging on visual quality and glucosinolates of broccoli florets. Food Chem 114:28–37. doi:10.1016/j.foodchem.2008.09.009

    Article  CAS  Google Scholar 

  • Koo SY, Cha KH, Song DG, Chung D, Pan CH (2011) Amplification of sulforaphane content in red cabbage by pressure and temperature treatments. J Appl Biol Chem 54:183–187. doi:10.3839/jksabc.2011.030

    CAS  Google Scholar 

  • Koo SY, Cha KH, Song DG, Lee DU, Pan CH (2012) Increased sulforaphane concentration in brussels sprout following high hydrostatic pressure treatment. J Kor Soc Appl Biol Chem 55:685–687. doi:10.1007/s13765-012-2123-4

    Article  Google Scholar 

  • Li L, Lee W, Lee WJ, Auh JH, Kim SS, Yoon J (2010) Extraction of allyl isothiocyanate from wasabi (Wasabia japonica Matsum) using supercritical carbon dioxide. Food Sci Biotechnol 19:405–410. doi:10.1007/s10068-010-0057-3

    Article  CAS  Google Scholar 

  • Lim S, Lee EJ, Kim J (2015) Decreased sulforaphene concentration and reduced myrosinase activity of radish (Raphanus sativus L.) root during cold storage. Postharvest Biol Technol 100:219–225. doi:10.1016/j.postharvbio.2014.10.007

    Article  CAS  Google Scholar 

  • Ludikhuyze L, Ooms V, Weemaes C, Hendrickx M (1999) Kinetic study of the irreversible thermal and pressure inactivation of myrosinase from broccoli (Brassica oleracea L. Cv. Italica). J Agric Food Chem 47:1794–1800. doi:10.1021/jf980964y

    Article  CAS  Google Scholar 

  • Mohn T, Cutting B, Ernst B, Hamburger M (2007) Extraction and analysis of intact glucosinolates—a validated pressurized liquid extraction/liquid chromatography-mass spectrometry protocol for Isatis tinctoria, and qualitative analysis of other cruciferous plants. J Chromatogr A 1166:142–151. doi:10.1016/j.chroma.2007.08.028

    Article  CAS  Google Scholar 

  • Nadarajah D, Han JH, Holley RA (2005) Use of mustard flour to inactivate Escherichia coli O157:H7 in ground beef under nitrogen flushed packaging. Int J Food Microbiol 99:257–267. doi:10.1016/j.ijfoodmicro.2004.08.018

    Article  CAS  Google Scholar 

  • Nugrahedi PY, Hantoro I, Verkerk R, Dekker M, Steenbekkers B (2015a) Practices and health perception of preparation of Brassica vegetables: translating survey data to technological and nutritional implications. Int J Food Sci Nutr 66:633–641. doi:10.3109/09637486.2015.1064868

    Article  Google Scholar 

  • Nugrahedi PY, Verkerk R, Widianarko B, Dekker M (2015b) A mechanistic perspective on process-induced changes in glucosinolate content in Brassica vegetables: a review. Crit Rev Food Sci Nutr 55:823–838. doi:10.1080/10408398.2012.688076

    Article  CAS  Google Scholar 

  • Oerlemans K, Barrett DM, Suades CB, Verkerk R, Dekker M (2006) Thermal degradation of glucosinolates in red cabbage. Food Chem 95:19–29. doi:10.1016/j.foodchem.2004.12.013

    Article  CAS  Google Scholar 

  • Okunade OA, Ghawi SK, Methven L, Niranjan K (2015) Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J. Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. subsp. maire) seeds. Food Chem 187:485–490. doi:10.1016/j.foodchem.2015.04.054

    Article  CAS  Google Scholar 

  • Omirou M, Papastylianou I, Iori R, Papastephanou C, Papadopoulou KK, Ehaliotis C, Karpouzas DG (2009) Microwave-assisted extraction of glucosinolates from Eruca sativa seeds and soil: comparison with existing methods. Phytochem Anal 20:214–220. doi:10.1002/pca.1117

    Article  CAS  Google Scholar 

  • Palani K, Harbaum-Piayda B, Meske D, Keppler JK, Bockelmann W, Heller KJ, Schwarz K (2016) Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. Food Chem 190:755–762. doi:10.1016/j.foodchem.2015.06.012

    Article  CAS  Google Scholar 

  • Palermo M, Pellegrini N, Fogliano V (2014) The effect of cooking on the phytochemical content of vegetables. J Sci Food Agric 94:1057–1070. doi:10.1002/jsfa.6478

    Article  CAS  Google Scholar 

  • Patsioura A, Galanakis CM, Gekas V (2011) Ultrafiltration optimization for the recovery of β-glucan from oat mill waste. J Membr Sci 373:53–63

    Article  CAS  Google Scholar 

  • Peñas E, Pihlava JM, Vidal-Valverde C, Frias J (2012) Influence of fermentation conditions of Brassica oleracea L. var. capitata on the volatile glucosinolate hydrolysis compounds of sauerkrauts. LWT—Food Sci Technol 48:16–23. doi:10.1016/j.lwt.2012.03.005

    Google Scholar 

  • Pongmalai P, Devahastin S, Chiewchan N, Soponronnarit S (2015) Enhancement of microwave-assisted extraction of bioactive compounds from cabbage outer leaves via the application of ultrasonic pretreatment. Sep Purif Technol 144:37–45. doi:10.1016/j.seppur.2015.02.010

    Article  CAS  Google Scholar 

  • Powell EE, Hill GA, Juurlink BHJ, Carrier DJ (2005) Glucoraphanin extraction from Cardaria draba: part 1. Optimization of batch extraction. J Chem Technol Biotechnol 80:985–991. doi:10.1002/jctb.1273

    Article  CAS  Google Scholar 

  • Rask L, Andréasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113. doi:10.1023/a:1006380021658

    Article  CAS  Google Scholar 

  • Rodrigues AS, Rosa EAS (1999) Effect of post-harvest treatments on the level of glucosinolates in broccoli. J Sci Food Agric 79:1028–1032. doi:10.1002/(sici)1097-0010(19990515)79:7<1028:aid-jsfa322>3.0.co;2-i

    Article  CAS  Google Scholar 

  • Roselló-Soto E, Barba FJ, Parniakov O, Galanakis CM, Grimi N, Lebovka N, Vorobiev E (2015a) High voltage electrical discharges, pulsed electric field and ultrasounds assisted extraction of protein and phenolic compounds from olive kernel. Food Bioprocess Technol 8:885–894

    Article  Google Scholar 

  • Roselló-Soto E, Galanakis CM, Brncic M, Orlien V, Trujillo FJ, Mawson R, Knoerzer K, Tiwari BK, Barba FJ (2015b) Clean recovery of antioxidant compounds from plant foods, byproducts and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends Food Sci Technol 42:134–149

    Article  Google Scholar 

  • Sánchez-Vega R, Elez-Martínez P, Martín-Belloso O (2015) Influence of high-intensity pulsed electric field processing parameters on antioxidant compounds of broccoli juice. Innovative Food Sci Emerg Technol 29:70–77. doi:10.1016/j.ifset.2014.12.002

    Article  Google Scholar 

  • Sarvan I, Verkerk R, Dekker M (2012) Modelling the fate of glucosinolates during thermal processing of Brassica vegetables. LWT—Food Sci Technol 49:178–183. doi:10.1016/j.lwt.2012.07.005

    CAS  Google Scholar 

  • Sarvan I, Valerio F, Lonigro SL, de Candia S, Verkerk R, Dekker M, Lavermicocca P (2013) Glucosinolate content of blanched cabbage (Brassica oleracea var. capitata) fermented by the probiotic strain Lactobacillus paracasei LMG-P22043. Food Res Int 54:706–710. doi:10.1016/j.foodres.2013.07.065

  • Sarvan I, Verkerk R, van Boekel M, Dekker M (2014) Comparison of the degradation and leaching kinetics of glucosinolates during processing of four Brassicaceae (broccoli, red cabbage, white cabbage, Brussels sprouts). Innovative Food Sci Emerg Technol 25:58–66. doi:10.1016/j.ifset.2014.01.007

    Article  CAS  Google Scholar 

  • Sasaki K, Neyazaki M, Shindo K, Ogawa T, Momose M (2012) Quantitative profiling of glucosinolates by LC-MS analysis reveals several cultivars of cabbage and kale as promising sources of sulforaphane. J Chromatogr B-Anal Technol Biomed Life Sci 903:171–176. doi:10.1016/j.jchromb.2012.07.017

    Article  CAS  Google Scholar 

  • Schreiner M, Peters P, Krumbein A (2007) Changes of glucosinolates in mixed fresh-cut broccoli and cauliflower florets in modified atmosphere packaging. J Food Sci 72:S585–S589. doi:10.1111/j.1750-3841.2007.00506.x

    Article  CAS  Google Scholar 

  • Smiechowska A, Bartoszek A, Namiesnik J (2010) Determination of glucosinolates and their decomposition products-Indoles and Isothiocyanates in Cruciferous vegetables. Crit Rev Anal Chem 40:202–216. doi:10.1080/10408347.2010.490489

    Article  CAS  Google Scholar 

  • Solana M, Boschiero I, Dall’Acqua S, Bertucco A (2014) Extraction of bioactive enriched fractions from Eruca sativa leaves by supercritical CO2 technology using different co-solvents. J Supercrit Fluids 94:245–251. doi:10.1016/j.supflu.2014.08.022

    Article  CAS  Google Scholar 

  • Sun M, Xu L, Saldana MDA, Temelli F (2008) Comparison of canola meals obtained with conventional methods and supercritical CO2 with and without ethanol. J Am Oil Chem Soc 85:667–675. doi:10.1007/s11746-008-1239-5

    Article  CAS  Google Scholar 

  • Szmigielska AM, Schoenau JJ, Levers V (2000) Determination of glucosinolates in canola seeds using anion exchange membrane extraction combined with the high-pressure liquid chromatography detection. J Agric Food Chem 48:4487–4491. doi:10.1021/jf000477u

    Article  CAS  Google Scholar 

  • Szydlowska-Czerniak A, Tulodziecka A, Karlovits G, Szlyk E (2015) Optimisation of ultrasound-assisted extraction of natural antioxidants from mustard seed cultivars. J Sci Food Agric 95:1445–1453. doi:10.1002/jsfa.6840

    Article  CAS  Google Scholar 

  • Tanongkankit Y, Sablani SS, Chiewchan N, Devahastin S (2013) Microwave-assisted extraction of sulforaphane from white cabbages: effects of extraction condition, solvent and sample pretreatment. J Food Eng 117:151–157. doi:10.1016/j.jfoodeng.2013.02.011

    Article  CAS  Google Scholar 

  • Tao C, He B (2004) Isolation of intact glucosinolates from mustard seed meal to increase the sustainability of biodiesel utilisation. ASAE Annual International Meeting, pp 6703–6713

    Google Scholar 

  • Terefe NS, Buckow R, Versteeg C (2014) Quality-related enzymes in fruit and vegetable products: Effects of novel food processing technologies, part 1: high-pressure processing. Crit Rev Food Sci Nutr 54:24–63. doi:10.1080/10408398.2011.566946

    Article  CAS  Google Scholar 

  • Tolonen M, Taipale M, Viander B, Pihlava JM, Korhonen H, Ryhanen EL (2002) Plant-derived biomolecules in fermented cabbage. J Agric Food Chem 50:6798–6803. doi:10.1021/jf0109017

    Article  CAS  Google Scholar 

  • Tsao R, Yu Q, Potter J, Chiba M (2002) Direct and simultaneous analysis of sinigrin and allyl isothiocyanate in mustard samples by high-performance liquid chromatography. J Agric Food Chem 50:4749–4753. doi:10.1021/jf0200523

    Article  CAS  Google Scholar 

  • Vallejo F, Tomás-Barberán F, García-Viguera C (2003) Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. J Agric Food Chem 51:3029–3034. doi:10.1021/jf021065j

    Article  CAS  Google Scholar 

  • Van Eylen D, Oey I, Hendrickx M, Van Loey A (2007) Kinetics of the stability of broccoli (Brassica oleracea Cv. Italica) myrosinase and isothiocyanates in broccoli juice during pressure/temperature treatments. J Agric Food Chem 55:2163–2170. doi:10.1021/jf062630b

    Article  Google Scholar 

  • Van Eylen D, Oey I, Hendrickx M, Loey AV (2008) Effects of pressure/temperature treatments on stability and activity of endogenous broccoli (Brassica oleracea L. cv. Italica) myrosinase and on cell permeability. J Food Eng 89:178–186. doi:10.1016/j.jfoodeng.2008.04.016

    Article  Google Scholar 

  • Verkerk R, Dekker M, Jongen WMF (2001) Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. J Sci Food Agric 81:953–958. doi:10.1002/jsfa.854

    Article  CAS  Google Scholar 

  • Wang LJ, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312. doi:10.1016/j.tifs.2005.12.004

    Article  CAS  Google Scholar 

  • Wang TX, Liang H, Yuan QP (2011) Optimization of ultrasonic-stimulated solvent extraction of sinigrin from Indian mustard seed (Brassica Juncea L.) using response surface methodology. Phytochem Anal 22:205–213. doi:10.1002/pca.1266

    Article  CAS  Google Scholar 

  • Wang X, Jin Q, Wang T, Huang J, Xia Y, Yao L (2012) Screening of glucosinolate-degrading strains and its application in improving the quality of rapeseed meal. Ann Microbiol 62:1013–1020. doi:10.1007/s13213-011-0341-3

    Article  CAS  Google Scholar 

  • Wu H, Zhang GA, Zeng SY, Lin KC (2009) Extraction of allyl isothiocyanate from horseradish (Armoracia rusticana) and its fumigant insecticidal activity on four stored-product pests of paddy. Pest Manage Sci 65:1003–1008. doi:10.1002/ps.1786

    Article  CAS  Google Scholar 

  • Zinoviadou KG, Barba FJ, Galanakis CM, Brnčić M, Trujillo F, Mawson R, Knoerzer K (2015) Fruit juice sonication: implications on food safety and physicochemical and nutritional properties. Food Res Int. doi:10.1016/j.foodres.2015.05.032

    Google Scholar 

Download references

Acknowledgements

Kyriaki Zinoviadou was supported through the Athinoula A. Martinos Endowed Professorship, Perrotis College, 2015–2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charis M. Galanakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zinoviadou, K.G., Galanakis, C.M. (2017). Glucosinolates and Respective Derivatives (Isothiocyanates) from Plants. In: Puri, M. (eds) Food Bioactives. Springer, Cham. https://doi.org/10.1007/978-3-319-51639-4_1

Download citation

Publish with us

Policies and ethics