Skip to main content

Shrinkage in UV-Curable Coatings

  • Chapter
  • First Online:
Protective Coatings

Abstract

The chapter first describes fundamentals and applications of UV-curing technology and brings out the most important problem in this area: shrinkage. In the following text, the reason for shrinkage formation, its influence in UV-curing, and the methods to measure the shrinkage are described. The methods reviewed include dilatometry, pycnometer, buoyancy, bonded-disk, interferometer, laser displacement, laser scanning, video-imaging device and some combined methods. After that, several ways to control or overcome the problem of shrinkage are summarized, including changing the condition of UV-curing, adding an inert component, adjusting the structure of monomers, such as decreasing the density of functional groups, introducing rigid structure, applying ring-opening polymerization, using thiol-containing system and hybrid system (e.g., free-radical/cationic hybrid system, thiol-ene/acrylate hybrid system and organic/inorganic hybrid system), and adopting solid-state photopolymerization. The developing prospects of the research for shrinkage in UV-curable coatings are given in the concluding section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kodate, K., Takenaka, H., Kamiya, T.: Fabrication of high numerical aperture zone plates using deep ultraviolet lithography. Appl. Opt. 23(3), 504–507 (1984)

    Google Scholar 

  2. Fouassier, J.-P., Morlet-Savary, F.: Photopolymers for laser imaging and holographic recording: design and reactivity of photosensitizers. Opt. Eng. 35(1), 304–312 (1996)

    Article  Google Scholar 

  3. He, Y., Wu, W.B., Fu, J.Z.: Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer. RSC Adv. 5(4), 2694–2701 (2015)

    Article  Google Scholar 

  4. Lee, J.W., Cho, D.W.: Development of a resin curing model for UV nanoimprint. J. Nanosci. Nanotechnol. 5(10), 1637–1642 (2005)

    Article  Google Scholar 

  5. Decker, C.: The use of UV irradiation in polymerization. Polym. Int. 45, 133–141 (1998)

    Article  Google Scholar 

  6. Crivello, J.V.: The discovery and development of onium salt cationic photoinitiators. J. Polym. Sci. A Polym. Chem. 37, 4241–4254 (1999)

    Article  Google Scholar 

  7. Cramer, N.B., Bowman, C.N.: Kinetic of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared. J. Polym. Sci. A Polym. Chem. 39, 3311–3319 (2001)

    Article  Google Scholar 

  8. Berchtold, K.A., Hacioglu, B., Lovell, L., Nie, J., Bowman, C.N.: Using changes in initiation and chain transfer rates to probe the kinetics of cross-linking photopolymerizations: effects of chain length dependent termination. Macromolecules. 34, 5103–5111 (2001)

    Article  Google Scholar 

  9. Chen-Yang, Y.W., Chuang, J.R., Yang, Y.C., Li, C.Y., Chiu, Y.S.: New UV-curable cyclotriphosphazenes as fire-retardant coating materials for wood. J. Appl. Polym. Sci. 69, 115–122 (1998)

    Article  Google Scholar 

  10. Jung, S.-J., Lee, S.-J., Cho, W.-J., Ha, C.-S.: Synthesis and properties of UV-curable waterborne unsaturated polyester for wood coating. J. Appl. Polym. Sci. 69, 695–708 (1998)

    Article  Google Scholar 

  11. Chang, C.-W., Lu, K.-T.: Epoxy acrylate UV/PU dual-cured wood coatings. J Appl. Polym. Sci. 115, 2197–2202 (2010)

    Article  Google Scholar 

  12. Herrera, R., Muszyńska, M., Krystofiak, T., Labidi, J.: Comparative evaluation of different thermally modified wood samples finishing with UV-curable and waterborne coatings. Appl. Surf. Sci. 357, 1444–1453 (2015)

    Article  Google Scholar 

  13. Sponsler, M.B.: Refractive index and orientation profiles of holographic graftings written in liquid crystalline monomers. J. Phys, Chem. 99, 9430–9436 (1995)

    Article  Google Scholar 

  14. Löchel, B., Maciossek, A., Quenzer, H.J., Wagner, B.: Ultraviolet depth lithography and galvanoforming for micromachining. J. Electrochem. Soc. 143, 237–244 (1995)

    Article  Google Scholar 

  15. Decker, C.: Photoinitiated crosslinking polymerisation. Prog. Polym. Sci. 21, 593–650 (1996)

    Article  Google Scholar 

  16. Decker, C.: Kinetic study and new applications of UV radiation curing. Marcomol. Rapid Commun. 23, 1067–1093 (2002)

    Article  Google Scholar 

  17. Sangermano, M., Razza, N., Crivello, J.V.: Cationic UV-Curing: Technology and Applications. Macromol. Mater. Eng. 299, 775–793 (2014)

    Article  Google Scholar 

  18. Anseth, K.S., Bowman, C.N., Peppas, N.A.: Polymerization kinetics and volume relaxation behavior of photopolymerized multifunctional monomers producing highly crosslinked networks. J. Polym. Sci. A Polym. Chem. 32, 139 (1994)

    Article  Google Scholar 

  19. Lu, B., Xiao, P., Sun, M., Nie, J.: Reducing shrinkage by low-temperature photopolymerization. J. Appl. Polym. Sci. 104, 1126–1130 (2007)

    Article  Google Scholar 

  20. Jian, Y., He, Y., Jiang, T.Z., Li, C.G., Yang, W.T., Nie, J.: Polymerization shrinkage of (meth)acrylate determined by reflective laser beam scanning. J. Polym. Sci. Part B: Polym. Phys. 50, 923–928 (2012)

    Article  Google Scholar 

  21. Hiroshima, H., Suzuki, K.: Study on change in UV nanoimprint pattern by altering shrinkage of UV curable resin. Jpn. J. Appl. Phys. 50, 60GK0901–660GK095 (2011)

    Article  Google Scholar 

  22. Wang, Q.K., Huang, B.Q., Wei, X.F., Shen, H.C.: Study on shrinkage of cured volume for UV-curing coatings. Appl. Mech. Mater. 731, 588–592 (2015)

    Article  Google Scholar 

  23. Kim, R.J.-Y., Kim, Y.-J., Choi, N.-S., Lee, I.-B.: Polymerization shrinkage, modulus, and shrinkage stress related to tooth restoration interfacial debonding in bulk-fill composites. J. Dent. 43, 430–439 (2015)

    Article  Google Scholar 

  24. Wen, M., Scriven, L.E., McCormick, A.V.: Differential scanning calorimetry and cantilever deflection studies of polymerization kinetics and stress in ultraviolet curing of multifunctional (meth)acrylate coatings. Macromolecules. 35, 112–120 (2002)

    Article  Google Scholar 

  25. de Gee, A.J., Davidson, C.L., Smith, A.: A modified dilatometer for continuous recording of volumetric polymerization shrinkage of composite restorative materials. J. Dent. 9, 36–42 (1981)

    Article  Google Scholar 

  26. Lai, J.H., Johnson, A.E.: Measuring polymerization shrinkage of photo-activated restorative materials by a water-filled dilatometer. Dent. Mater. 9, 139–143 (1993)

    Article  Google Scholar 

  27. Shah, D.U., Schubel, P.J.: Evaluation of cure shrinkage measurement techniques for thermosetting resins. Polym. Test. 29, 629–639 (2010)

    Article  Google Scholar 

  28. Rueggeberg, F., Tamareselvy, K.: Resin cure determination by polymerization shrinkage. Dent. Mater. 11, 265–268 (1995)

    Article  Google Scholar 

  29. Bekkedahl, N.: Volume Dilatometry. J. Res. Natl. Bur. Stds. 42, 145–156 (1949)

    Article  Google Scholar 

  30. Haider, M., Hubert, P., Lessard, L.: Cure shrinkage characterization and modeling of a polyester resin containing low profile additives. Composites: Part A. 38, 994–1009 (2007)

    Article  Google Scholar 

  31. Lee, I.-B., Cho, B.-H., Son, H.-H., Um, C.-M., Lim, B.-S.: The effect of consistency, specimen geometry and adhesion on the axial polymerization shrinkage measurement of light cured composites. Dent. Mater. 22, 1071–1079 (2006)

    Article  Google Scholar 

  32. Feilzer, A.J., de Gee, A.J., Davidson, C.L.: Increased wall-to-wall curing contraction in thin bonded resin layers. J. Dent. Res. 68, 48–50 (1989)

    Article  Google Scholar 

  33. Watts, D.C., Cash, A.J.: Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dent. Mater. 7, 281–287 (1991)

    Article  Google Scholar 

  34. Watts, D.C., Hindi, A.A.: Intrinsic ‘soft-start’ polymerization shrinkage kinetics in a acrylate-based resin composite. Dent. Mater. 15, 39–45 (1999)

    Article  Google Scholar 

  35. Watts, D.C., Marouf, A.S.: Optimal specimen geometry in bonded-disc shrinkage-strain measurements on light-cured biomaterials. Dent. Mater. 16, 447–451 (2000)

    Article  Google Scholar 

  36. Atai, M., Watts, D.C., Atai, Z.: Shrinkage strain rates of dental resin monomer and composite systems. Biomaterials. 26, 5015–5020 (2005)

    Article  Google Scholar 

  37. Koseki, K., Sakamaki, H., Jeong, K.-M.: In situ measurement of shrinkage behavior of photopolymers. J. Photopolym. Sci. Technol. 26, 567–572 (2013)

    Article  Google Scholar 

  38. Fogleman, E.A., Kelly, M.T., Grubbs, W.T.: Laser interferometric method for measuring linear polymerization shrinkage in light cured dental restoratives. Dent. Mater. 18, 324–330 (2002)

    Article  Google Scholar 

  39. Fano, V., Ortalli, I., Pizzi, S., Bonanini, M.: Polymerization shrinkage of microfilled composites determined by laser beam scanning. Biomaterials. 18(6), 467–470 (1997)

    Article  Google Scholar 

  40. Neo, W.K., Chan-Park, M.B.: A new model and measurement technique for dyamic shrinkage during photopolymerization of multi-acrylate. Macromol. Rapid Commun. 26, 1008–1013 (2005)

    Article  Google Scholar 

  41. Zhou, W.X., Chan-Park, M.B.: Effect of oligomer length on the buckling of long and high aspect ratio microwalls UV embossed from oligomer/monomer mixtures. Sens. Actuat. B. 128, 12–22 (2007)

    Article  Google Scholar 

  42. Dudi, O., Grubbs, W.T.: Laser interferometric technique for measuring polymer cure kinetics. J. Appl. Polym. Sci. 74, 2133–2142 (1999)

    Article  Google Scholar 

  43. Sharp, L.J., Choi, I.B., Lee, T.E., Sy, A., Suh, B.I.: Volumetric shrinkage of composited using video-imaging. J. Dent. 31, 97–103 (2003)

    Article  Google Scholar 

  44. Szczepanski, C.R., Stansbury, J.W.: Stress reduction in phase-separated, cross-linked networks: Influence of phase structure and kinetics of reaction. J. Appl. Polym. Sci. 131, 40879/1–40879/10 (2014)

    Article  Google Scholar 

  45. Schmidt, C., Scherzer, T.: Monitoring of the shrinkage during the photopolymerization of acrylates using hyphenated photorheometry/near-infrared spectroscopy. J. Polym. Sci. Part B: Polym. Phys. 53, 729–739 (2015)

    Article  Google Scholar 

  46. Schmidt, L.E., Leterrier, Y., Schmäh, D., Månson, J.-A.E., James, D., Gustavsson, E., Svensson, L.S.: Conversion analysis of acrylated hyperbranched polymers UV cured below their ultimate glass transition temperature. J. Appl. Polym. Sci. 104, 2366–2376 (2007)

    Article  Google Scholar 

  47. Lecamp, L., Youssef, B., Bunel, C., Lebaudy, P.: Photoinitiated polymerization of a dimethacrylate oligomer 1. Influence of photoinitiator concentration, temperature and light intensity. Polymer. 38, 6089–6096 (1997)

    Article  Google Scholar 

  48. Asmussen, E., Peutzfeldt, A.: Polymerization contraction of resin composite vs. energy and power density of light-cure. Eur. J. Oral. Sci. 113, 417–421 (2005)

    Article  Google Scholar 

  49. Silikas, N., Eliades, G., Watts, D.C.: Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent. Mater. 16, 292–296 (2000)

    Article  Google Scholar 

  50. Uno, S., Asmussen, E.: Marginal adaptation of a restorative resin polymerized at reduced rate. Scand. J. Dent. Res. 99, 440–444 (1991)

    Google Scholar 

  51. Unterbrink, G.L., Muessner, R.: Influence of light intensity on two restorative systems. J. Dent. 23, 183–189 (1995)

    Article  Google Scholar 

  52. Feilzer, A.J., de Gee, A.J., Dooren, L.H., Davidson, C.L.: Influence of light intensity on polymerization shrinkage and integrity of restoration-cavity interface. Eur. J. Oral. Sci. 103, 322–326 (1995)

    Article  Google Scholar 

  53. Neves, A.D., Discacciati, J.A.C., Oréfice, R.L., Yoshida, M.I.: Influence of the power density on the kinetics of photopolymerization and properties of dental composites. J. Biomed. Mater. Res. B Appl. Biomater. 72, 393–400 (2005)

    Article  Google Scholar 

  54. Vaessen, D.M., Ngantung, F.A., Palacio, M.L.B., Francis, L.F., Mccormick, A.V.: Effect of lamp cycling on conversion and stress development in ultraviolet-cured acrylate coatings. J. Appl. Polym. Sci. 84, 2784–2793 (2002)

    Article  Google Scholar 

  55. Ferracane, J.L., Mitchem, J.C., Condon, J.R., Todd, R.: Wear and marginal breakdown of composites with various degrees of cure. J. Dent. Res. 76, 1508–1516 (1997)

    Article  Google Scholar 

  56. Turssi, C.P., Ferracane, J.L., Vogel, K.: Filler features and their effects on wear and degree of conversion of particulate dental resin composites. Biomaterials. 26, 4932–4937 (2005)

    Article  Google Scholar 

  57. Spinell, T., Schedle, A., Watts, D.C.: Polymerization shrinkage kinetics of dimethacrylate resin-cements. Dent. Mater. 25, 1058–1066 (2009)

    Article  Google Scholar 

  58. Kahler, B., Kotousov, A., Borkowski, K.: Effect of material properties on stresses at the restoration-dentin interface of composite restorations during polymerization. Dent. Mater. 22, 942–947 (2006)

    Article  Google Scholar 

  59. Condon, J.R., Ferracane, J.L.: Assessing the effect of composite formulation on polymerization stress. J. Am. Dent. Assoc. 131, 497–503 (2000)

    Article  Google Scholar 

  60. Geiser, V., Leterrier, Y., Månson, J.-A.E.: Conversion and shrinkage analysis of acrylated hyperbranched polymer nanocomposites. J. Appl. Polym. Sci. 114, 1954–1963 (2009)

    Article  Google Scholar 

  61. Liu, C.J., Kiasat, M.S., Nijhof, A.H., Blokland, H., Marissen, R.: The effect of the addition of a low profile additive on the curing shrinkage of an unsaturated polyester resin. Polym. Eng. Sci. 39(1), 18–25 (1999)

    Article  Google Scholar 

  62. Carioscia, J.A., Lu, H., Stanbury, J.W., Bowman, C.N.: Thiol ene oligomers as dental restorative materials. Dent. Mater. 21, 1137–1143 (2005)

    Article  Google Scholar 

  63. Chung, C.-M., Kim, M.-S., Kim, J.-G., Jang, D.-O.: Synthesis and photopolymerization of trifunctional methacrylates and their application as dental monomers. J. Biomed. Mater. Res. 62, 622–627 (2002)

    Article  Google Scholar 

  64. Jian, Y., He, Y., Zhao, L.Y.: Effect of monomer structure on real-time UV-curing shrinkage studied by a laser scanning approach. Adv. Polym. Technol. 32(1), 21331/1–21331/9 (2013)

    Article  Google Scholar 

  65. Jian, Y., He, Y., Jiang, T.Z., Li, C.G., Yang, W.T., Nie, J.: Volume shrinkage of UV-curable coating formulation investigated by real-time laser reflection method. J. Coat. Technol. Res. 10(2), 231–237 (2013)

    Article  Google Scholar 

  66. Liu, B.H., Nie, J., He, Y.: From rosin to high adhesive polyurethane acrylate: synthesis and properties. Int. J. Adhes. Adhes. 66, 99–103 (2016)

    Article  Google Scholar 

  67. Qin, L.L., He, Y., Liu, B.H., Jian, Y., Li, C.G., Nie, J.: Preparation and properties of polyurethane acrylates modified by saturated alcohols. Prog. Org. Coat. 76, 1594–1599 (2013)

    Article  Google Scholar 

  68. Sangermano, M., Ortiz, R.A., Urbina, B.A.P., Duarle, L.B., Valdez, A.E.G., Santos, R.G.: Synthesis of an epoxy functionalized spiroorthocarbonate used as low shrinkage additive in cationic UV curing of an epoxy resin. Eur. Polym. J. 44, 1046–1052 (2008)

    Article  Google Scholar 

  69. Nuyken, O., Böhner, R., Erdmann, C.: Oxetane Photopolymerization-A system with low shrinkage. Macromol. Symp. 107, 125–138 (1996)

    Article  Google Scholar 

  70. Sangermano, M., Malucelli, G., Delleani, G., Priola, A.: Bicyclo-orthoester as a low-shrinkage additive in cationic UV curing. Polym. Int. 56, 1224–1229 (2007)

    Article  Google Scholar 

  71. Sangermano, M., Giannelli, S., Ortiz, R.A., Berlanga Duarte, M.L., Rueda Gonzalez, A.K., Garcia Valdez, A.E.: Synthesis of an Oxetane-functionalized hemispiroorthocarbonate used as a low-shrinkage additive in the cationic ultraviolet curing of oxetane monomers. J. Appl. Polym. Sci. 112, 1780–1787 (2009)

    Article  Google Scholar 

  72. Moon, E.J., Lee, J.Y., Kim, C.K., Cho, B.H.: Dental restorative composites containing 2,2-Bis-[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane derivatives anf spiro orthocarbonates. J. Biomed. Mater. Res. B: Appl. Biomater. 73B, 338–346 (2005)

    Article  Google Scholar 

  73. Nagai, D., Nishida, M., Nagasawa, T., Ochiai, B., Miyazaki, K., Endo, T.: Non-shrinkage networked materials from the cross-linking copolymerization of spiroorthocarbonate with bifunctional oxetane. Macromol. Rapid Commun. 27, 921–925 (2006)

    Article  Google Scholar 

  74. Contreras, P.P, Tyagi, P., Agarwal, S.: Low shrinkage of polymers by photopolymerization of 1,1-bis(ethoxycarbonyl)-2-vinylcyclopropanes. Polym. Chem. 6, 2297-2304 (2015)

    Google Scholar 

  75. Sanda, F., Takata, T., Endo, T.: Radical ring-opening polymerization of novel vinylcyclopropanes designed as low shrinkage monomers. Structure of the polymer, mechanism of the polymerization, and volume change on the polymerization. Macromolecules. 28, 1346–1355 (1995)

    Article  Google Scholar 

  76. Posner, T.: Contributions for the knowledge of the unsaturated compounds. Ber. Dtsch. Chem. Ges. 38, 646–657 (1905)

    Article  Google Scholar 

  77. Hoyle, C.E., Bowman, C.N.: Thiol-ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010)

    Article  Google Scholar 

  78. Senyurt, A.F., Warren, G., Whitehead Jr., J.B., Hoyle, C.E.: Matrix physical structure effect on the electro-optic characteristics of thiol-ene based H-PDLC films. Polymer. 47, 2741–2749 (2006)

    Article  Google Scholar 

  79. Rydholm, A.E., Bowman, C.N., Anseth, K.S.: Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials. 26, 4495–4506 (2005)

    Article  Google Scholar 

  80. Cramer, N.B., Reddy, S.K., Lu, H., Cross, T., Raj, R., Bowman, C.N.: Thiol-ene photopolymerization of polymer-derived ceramic precursor. J. Polym. Sci. A Polym. Chem. 42, 1752–1757 (2004)

    Article  Google Scholar 

  81. Khire, V.S., Yi, Y., Clark, N.A., Bowman, C.N.: Formation and surface modification of nanopatterned thiol-ene substrates using step and flash imprint lithography. Adv. Mater. 20, 3308–3313 (2008)

    Article  Google Scholar 

  82. Hoyle, C.E., Lee, T.Y., Roper, T.: Thiol-enes: chemistry of the past with promise for the future. J. Polym. Sci. A Polym. Chem. 42, 5301–5338 (2004)

    Article  Google Scholar 

  83. Lu, H., Carioscia, J.A., Stansbury, J.W., Bowman, C.N.: Investigations of step-growth thiol-ene polymerizations for novel dental restoratives. Dent. Mater. 21, 1129–1136 (2005)

    Article  Google Scholar 

  84. Odian, G.: Principles of Polymerization, 4th edn. Wiley, Hoboken, NJ (1991)

    Google Scholar 

  85. Chatani, S., Gong, T., Earle, B.A., Podgórski, M., Bowman, C.N.: Visible-light initiated thiol-Michael addition photopolymerization reactions. ACS Macro. Lett. 3, 315–318 (2014)

    Article  Google Scholar 

  86. Sangermano, M., Carbonaro, W., Malucelli, G., Priola, A.: UV-cured interpenetrating acrylic-epoxy polymer networks: preparation and characterization. Macromol. Mater. Eng. 293, 515–520 (2008)

    Article  Google Scholar 

  87. Decker, C., Viet, T.N.T., Decker, D., Weber-Koehl, E.: UV radiation curing of acrylate epoxide systems. Polymer. 42, 5531–5541 (2001)

    Article  Google Scholar 

  88. Mineart, K., Dillman, B., Jessop, J.L.P.: Search for dual initiator synergy in UV initiated acrylate epoxy hybrid polymerization systems. Paper presented at the 241st ACS National Meeting & Exposition, Anaheim, CA, United States, 27-31 March 2011

    Google Scholar 

  89. Fouassier, J.P., Lalevée, J.: Photochemical production of interpenetrating polymer networks simultaneous initiation of radical and cationic polymerization reactions. Polymers. 6, 2588–2610 (2014)

    Article  Google Scholar 

  90. Cho, J.-D., Hong, J.-W.: UV initiated free radical and cationic photopolymerizations of acrylate epoxide and acrylate vinyl ether hybrid systems with and without photosensitizer. J. Appl. Polym. Sci. 93, 1473–1483 (2004)

    Article  Google Scholar 

  91. Jiang, T.Z., He, Y., Jian, Y., Nie, J.: Exploration for decreasing the volume shrinkage for photopolymerization. Prog. Org. Coat. 75, 398–403 (2012)

    Article  Google Scholar 

  92. Schreck, K.M., Leung, D., Bowman, C.N.: Hybrid organic/inorganic thiol-ene-based photopolymerized networks. Macromolecules. 44, 7520–7529 (2011)

    Article  Google Scholar 

  93. Belon, C., Chemtob, A., Croutxé-Barghorn, C., Rigolet, S., Houérou, V.L., Gauthier, C.: Combination of radical and cationic photoprocesses for the single-step synthesis of organic/inorganic hybrid films. J. Polym. Sci. A Polym. Chem. 48, 4150–4158 (2010)

    Article  Google Scholar 

  94. Berchtold, K.A., Hacioglu, B., Nie, J., Cramer, N.B., Stansbury, J.W., Bowman, C.N.: Rapid Solid-State Photopolymerization of Cyclic Acetal-Containing Acrylates. Macromolecules. 42, 2433–2437 (2009)

    Article  Google Scholar 

  95. Shibasaki, Y., Nakahara, H., Fukuda, K.: Solid-state polymerization of long-chain vinyl compounds. I. Effect of molecular arrangement on polymerizability of octadecyl methacrylate. J. Polym. Sci.: Polym. Chem. Edit. 17, 2387–2400 (1979)

    Google Scholar 

  96. Shibasaki, Y., Fukuda, K.: Solid-state polymerization of long-chain vinyl compounds. II. Effect of molecular arrangement on polymerizability of octadecyl acrylate. J. Polym. Sci.: Polym. Chem. Edit. 17, 2947–2959 (1979)

    Google Scholar 

  97. Shibasaki, Y.: Solid-state polymerization of long-chain vinyl compounds. III. Mechanism of γ-ray-initiated postpolymerization in layered structures of octadecyl methacrylate and acrylate. Polym. J. Sci.: Polym. Chem. Edit. 18, 1693–1709 (1980)

    Google Scholar 

  98. Shibasaki, Y., Fukuda, K.: Solid-state polymerization of long-chain vinyl compounds. IV. Effects of chain length on the polymorphic behavior and postpolymerization of n-alkyl methacrylate. J. Polym. Sci.: Polym. Chem. Edit. 18, 2437–2449 (1980)

    Google Scholar 

  99. Restaino, A.J., Mesrobian, R.B., Morawetz, H., Ballantine, D.S., Dienes, G.J., Metz, D.J.: γ-ray initiated polymerization of crystalline monomers. J. Am. Chem. Soc. 78, 2939–2943 (1956)

    Article  Google Scholar 

  100. Morosoff, N., Morawetz, H., Post, B.: Polymerization in the crystalline state. VII. A crystallographic study of the radiation -initiated polymerization in single crystals of vinyl stearate. J. Am. Chem. Soc. 87(14), 3035–3040 (1965)

    Article  Google Scholar 

  101. Fujimori, A., Saitoh, H., Shibasaki, Y.: Influence of molecular arrangement on the γ-ray-irradiation solid-state polymerization of 1-octadecyl vinyl ether with a characteristic polymorphism. J. Polym. Sci. A Polym. Chem. 37, 3845–3853 (1999)

    Article  Google Scholar 

  102. Jian, Y., He, Y., Wang, J., Yang, W.T., Nie, J.: Rapid solid-state photopolymerization of octadecyl acrylate: low shrinkage and insensitivity to oxygen. Polym. Int. 62, 1692–1697 (2013)

    Article  Google Scholar 

  103. Jian, Y., He, Y., Wang, J., Xu, B.B., Yang, W.T., Nie, J.: Rapid photopolymerization of octadecyl methacrylate in the solid state. New J. Chem. 37, 444–450 (2013)

    Article  Google Scholar 

  104. Wang, J., Jian, Y., Nie, J., He, Y.: Solid photopolymerization and polymer properties of octadecyl vinyl ether. J. Photoch. Photobio. A Chem. 27, 105–110 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

He, Y., Yao, M., Nie, J. (2017). Shrinkage in UV-Curable Coatings. In: Wen, M., Dušek, K. (eds) Protective Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-51627-1_9

Download citation

Publish with us

Policies and ethics