Skip to main content

Magnetic Microrheology for Characterization of Viscosity in Coatings

  • Chapter
  • First Online:
Protective Coatings

Abstract

This chapter reviews the technique of magnetic microrheology for the characterization of the viscosity of coatings. In magnetic microrheology, a liquid containing a dilute solution of micron-sized magnetic probe particles is placed in a magnetic field gradient and the motion of the probe particles is tracked with a microscope. The probe particle velocity found from image analysis is then used, along with the particle and system parameters, to find the local viscosity of the liquid. The application to coatings requires an apparatus designed for tracking particles in thin liquid coating layers. In the chapter, an overview of magnetic microrheology is provided, including the design of an apparatus for monitoring coating viscosity. Examples are provided for the use of the method to track viscosity as a function of time during drying and curing, and position through the thickness of the coatings. The chapter explores the application of the method to understand the effects of process variables on the viscosity development of a coating used in the manufacture of tissue paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bangert, C., Detiveaux, S.: The state of the global coatings industry. http://www.pfon-line.com/articles/the-state-of-the-global-coatings-industry (2014). Accessed 9 June 2016

  2. Overdiep, W.S.: The levelling of paints. Prog. Org. Coat. 14(2), 159–175 (1986)

    Article  Google Scholar 

  3. Wu, S.: Rheology of high solid coatings. I. Analysis of sagging and slumping. J. Appl. Polym. Sci. 22, 2769–2782 (1978)

    Article  Google Scholar 

  4. Lade Jr., R.K., Song, J.-O., Musliner, A.D., Williams, B.A., Kumar, S., Macosko, C.W., Francis, L.F.: Sag in drying coatings: prediction and real time measurement with particle tracking. Prog. Org. Coat. 86, 49–58 (2015)

    Article  Google Scholar 

  5. Waigh, T.A.: Microrheology of complex fluids. Rep. Prog. Phys. 68(3), 685–742 (2005)

    Article  Google Scholar 

  6. Gardel, M.L., Valentine, M.T., Weitz, D.A.: Microrheology. In: Breuer (ed.) Microscale Diagnostic Techniques, pp. 1–49. Springer, Berlin (2005)

    Chapter  Google Scholar 

  7. Cicuta, P., Donald, A.M.: Microrheology: a review of the method and applications. Soft Matter. 3(12), 1449–1455 (2007)

    Article  Google Scholar 

  8. Squires, T.M., Mason, T.G.: Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42, 413–438 (2010)

    Article  Google Scholar 

  9. Komoda, Y., Leal, L.G., Squires, T.M.: Local, real-time measurement of drying films of aqueous polymer solutions using active microrheology. Langmuir. 30(18), 5230–5237 (2014)

    Article  Google Scholar 

  10. Gu, Y., Kornev, K.G.: Ferromagnetic nanorods in applications to control of the in-plane anisotropy of composite films and for in situ characterization of the film rheology. Adv. Funct. Mater. 26(22), 3796–3808 (2016)

    Article  Google Scholar 

  11. Bausch, A.R., Möller, W., Sackmann, E.: Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76(1), 573–579 (1999)

    Article  Google Scholar 

  12. Yagi, K.: The mechanical and colloidal properties of amoeba protoplasm and their relations to the mechanism of amoeboid movement. Comp. Biochem. Physiol. 3(2), 73–91 (1961)

    Article  Google Scholar 

  13. Ortega, F., Ritacco, H., Rubio, R.G.: Interfacial microrheology: particle tracking and related techniques. Curr. Opin. Colloid Interface Sci. 15(4), 237–245 (2010)

    Article  Google Scholar 

  14. Shahin, G.T.: The stress deformation interfacial rheometer. Dissertation, University of Pennsylvania (1986)

    Google Scholar 

  15. Brooks, C.F., Fuller, G.G., Frank, C.W., Robertson, C.R.: An interfacial stress rheometer to study rheological transitions in monolayers at the air-water interface. Langmuir. 15(7), 2450–2459 (1999)

    Article  Google Scholar 

  16. Ding, J., Warriner, H.E., Zasadzinski, J.A.: Magnetic needle viscometer for Langmuir monolayers. Langmuir. 18(7), 2800–2806 (2002)

    Article  Google Scholar 

  17. Anguelouch, A., Leheny, R.L., Reich, D.H.: Application of ferromagnetic nanowires to interfacial microrheology. Appl. Phys. Lett. 89(11), 111914 (2006)

    Article  Google Scholar 

  18. Lee, M.H., Lapointe, C.P., Reich, D.H., Stebe, K.J., Leheny, R.L.: Interfacial hydrodynamic drag on nanowires embedded in thin oil films and protein layers. Langmuir. 25(14), 7976–7982 (2009)

    Article  Google Scholar 

  19. Dhar, P., Cao, Y., Fischer, T.M., Zasadzinski, J.A.: Active interfacial shear microrheology of aging protein films. Phys. Rev. Lett. 104(1), 016001 (2010)

    Article  Google Scholar 

  20. Edwards, D.E., Brenner, H., Wasan, D.T.: Interfacial Transport Processes and Rheology, p. 134. Butterworth-Heinemann, Boston (1991)

    Google Scholar 

  21. Moschakis, T.: Microrheology and particle tracking in food gels and emulsions. Curr. Opin. Colloid Interface Sci. 18(4), 311–323 (2013)

    Article  Google Scholar 

  22. Song, J.-O., Henry, R.M., Jacobs, R.M., Francis, L.F.: Magnetic microrhoemeter for in situ characterization of coating viscosity. Rev. Sci. Instrum. 81(9), 093903 (2010)

    Article  Google Scholar 

  23. Thomas, R.H., Walters, K.: The unsteady motion of a sphere in an elastic-viscous liquid. Rheol. Acta. 5(1), 23–27 (1966)

    Article  Google Scholar 

  24. Song, J.-O.: In situ characterization of dynamic structures of coatings. Dissertation, University of Minnesota Twin Cities (2012)

    Google Scholar 

  25. Svåsand, E., Skjeltorp, A.T., Akselvoll, J., Helgesen, G.: Local viscosity measurements using oscillating magnetic holes. J. Appl. Phys. 101(5), 054910 (2007)

    Article  Google Scholar 

  26. Panton, R.L.: Incompressible Flow, pp. 609–611. Wiley, New Jersey (2005)

    Google Scholar 

  27. Ceylan, K., Herdem, S., Abbasov, T.: A theoretical model for estimating of drag force in the flow of non-Newtonian fluids around spherical solid particles. Powder Technol. 103(3), 286–291 (1999)

    Article  Google Scholar 

  28. Chang, I.D.: On the wall effect correction of the stokes drag formula for axially symmetric bodies moving inside a cylindrical tube. Z. Angew. Math. Phys. 12(1), 6–14 (1961)

    Article  Google Scholar 

  29. Berdan II, C., Leal, C.G.: Motion of a sphere in the presence of a deformable interface: I. Perturbation of the interface from flat: the effects on drag and torque. J. Colloid Interface Sci. 87(1), 62–80 (1982)

    Article  Google Scholar 

  30. Cairncross, R.A., Francis, L.F., Scriven, L.E.: Predicting drying in coatings that react and gel: drying regime maps. AICHE J. 42(1), 55–67 (1996)

    Article  Google Scholar 

  31. Basu, S.K., Scriven, L.E., Francis, L.F., McCormick, A.V.: Mechanism of wrinkle formation in curing coatings. Prog. Org. Coat. 53(1), 1–16 (2005)

    Article  Google Scholar 

  32. Kim, J.C., Hillmyer, M.A., Francis, L.F.: Magnetic microrheology of block copolymer solutions. ACS Appl. Mater. Interfaces. 5(22), 11877–11883 (2013)

    Article  Google Scholar 

  33. Song, J.-O., McCormick, A.V., Francis, L.F.: Depthwise viscosity gradients in UV-cured epoxy coatings. Macromol. Mater. Eng. 298(2), 145–152 (2013)

    Article  Google Scholar 

  34. Biermann, C.J.: Handbook of Pulping and Paper Making, pp. 244–245. Academic Press, San Diego (1996)

    Google Scholar 

  35. Smook, G.A.: Handbook for Pulp and Paper Technologists, pp. 319–324. Angus Wild Publications, Inc., Vancouver (2003)

    Google Scholar 

  36. Allen, A.J., Lock, G.: Creping release agents. US Patent 5,660,687, 26 Aug 1997

    Google Scholar 

  37. Furman, G.S., Li, X.H., Su, W., Grigoriev, V.A.: Modifying agent for yankee coatings. US Patent 8,101,045 B2, 24 Jan 2012

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the industrial supporters of the Coating Process Fundamentals Program (CPFP) of the Industrial Partnership for Research in Interfacial & Materials Engineering (IPRIME) at the University of Minnesota. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorraine F. Francis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Castro, D.J., Song, JO., Lade, R.K., Francis, L.F. (2017). Magnetic Microrheology for Characterization of Viscosity in Coatings. In: Wen, M., Dušek, K. (eds) Protective Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-51627-1_5

Download citation

Publish with us

Policies and ethics