Skip to main content

Heterogeneity in Crosslinked Polymer Networks: Molecular Dynamics Simulations

  • Chapter
  • First Online:
Book cover Protective Coatings

Abstract

Crosslinked network formation occurs when multifunctional precursors react to form a three-dimensional polymer network. In attempting to link network topology to physical properties, materials are typically characterized by the functionality of the crosslink nodes, the typical chain length between crosslinks and the concentration of the crosslink junctions. Statistical models that are in common usage calculate average values of these quantities and do not determine the possible variation in these properties. Molecular dynamics studies show not only how networks form and whether the average values conform to the predictions of these statistical theories, but also how they vary locally. An important result from the simulations is that there are significant regions where there are few bonds connecting neighboring chains. In addition, very long loops and dangling chains occur. None of this should be surprising in a system where the reactions and spatial arrangements are influenced by random chance and there are such a huge number of precursor molecules and possibilities that a number of nonideal configurations are possible. The simulations permit visualizations of these imperfections and show how large they are. Many of the end use properties of polymer networks depend on the continuity of the network, so this heterogeneity must have an impact on the physical properties. Here, the simulations use coarse-grained techniques that are not specific to any reactive chemistry, but such research may indicate how networks can be assembled that are less prone to large heterogeneities and are thus more robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flory, P.J.: Network structure and the elastic properties of vulcanized rubber. Chem. Rev. 135, 51–75 (1944)

    Article  Google Scholar 

  2. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)

    Google Scholar 

  3. Stockmayer, W.H.: Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys. 11(2), 45–55 (1943)

    Article  Google Scholar 

  4. Stockmayer, W.H.: Theory of molecular size distribution and gel formation in branched polymers II. General cross linking. J. Chem. Phys. 12(40), 125–131 (1944)

    Article  Google Scholar 

  5. Dušek, K.: Crosslinking and networks. Makromol. Chem. Suppl. 2, 35–49 (1979)

    Article  Google Scholar 

  6. Cail, J.I., Stepto, R.F.T.: The gel point and network formation—theory and experiment. Polym. Bull. 58(1), 15–25 (2007)

    Article  Google Scholar 

  7. Zhou, H., Woo, J., Cok, A.M., Wang, M., Olsen, B.D., Johnson, J.A.: Counting primary loops in polymer gels. Proc. Natl. Acad. Sci. USA. 109(47), 19119–19124 (2012)

    Article  Google Scholar 

  8. Duering, E.R., Kremer, K., Grest, G.S.: Structure and relaxation of end-linked polymer networks. J. Chem. Phys. 101, 8169–8192 (1994)

    Article  Google Scholar 

  9. Duering, E.R., Kremer, K., Grest, G.S.: Structural properties of randomly crosslinked polymer networks. Progr. Colloid Polym. Sci. 90, 13–15 (1992)

    Article  Google Scholar 

  10. Gordon, M.: Good’s theory of cascade processes applied to the statistics of polymer distributions. Proc. R. Soc. Lond. A Math. Phys. Sci. 268, 240–256 (1962)

    Article  Google Scholar 

  11. Treloar, L.R.G.: The Physics of Rubber Elasticity. Clarendon Press, Oxford (1958)

    Google Scholar 

  12. Flory, P.J., Rehner, J.: Statistical mechanics of swelling of crosslinked polymer networks. Chem. Phys. 11, 521–526 (1943)

    Google Scholar 

  13. Coniglio, A., Stanley, H.E., Klein, W.: Site-bond correlated-percolation problem: a statistical mechanical model of polymer gelation. Phys. Rev. Lett. 42(8), 513–522 (1979)

    Article  Google Scholar 

  14. Gujrati, P.D.: Thermal and percolative transitions and the need for independent symmetry breakings in branched polymers on a Bethe lattice. J. Chem. Phys. 98(2), 1613–1634 (1993)

    Article  Google Scholar 

  15. Dušek, K.: My fifty years with polymer gels and networks and beyond. Polym. Bull. 58, 321–338 (2007)

    Article  Google Scholar 

  16. Dušek, K., Dušková-Smrčková, M.: Network structure formation during crosslinking of organic coating systems. Prog. Polym. Sci. 25, 1215–1260 (2000)

    Article  Google Scholar 

  17. Dušek, K., Dušková-Smrčková, M., Huybrechts, J., Ďuračková, A.: Polymer networks from preformed precursors having molecular weight and group reactivity distributions. Theory and application. Macromolecules. 46, 2767–2784 (2013)

    Article  Google Scholar 

  18. Miller, D.R., Macosko, C.W.: Molecular weight relations for crosslinking of chains with length and site distribution. J. Polym. Sci. B Polym. Phys. 25, 2441–2469 (1987)

    Article  Google Scholar 

  19. Miller, D.R., Macosko, C.W.: Network parameters for crosslinking of chains with length and site distribution. J. Polym. Sci. B Polym. Phys. 26, 1–54 (1988)

    Article  Google Scholar 

  20. Dušek, K., Spĕváček, J.: Cyclization in vinyl–divinyl copolymerization. Polymer. 21, 750–756 (1980)

    Article  Google Scholar 

  21. Tiemersma-Thoone, G.P.J.M., Scholtens, B.J.R., Dušek, K., Gordon, M.: Theories for network formation in multistage processes. J. Polym. Sci. B Polym. Phys. 29, 463–482 (1991)

    Article  Google Scholar 

  22. Flory, P.J.: Statistical thermodynamics of random networks. Proc. R. Soc. Lond. A Math. Phys. Sci. 351, 351–380 (1976)

    Article  Google Scholar 

  23. Queslel, J.P., Mark, J.E.: Molecular interpretation of the moduli of elastomeric polymer networks of known structure. Adv. Polym. Sci. 85, 135–176 (1984)

    Article  Google Scholar 

  24. Flory, P.J.: Elastic activity of imperfect networks. Macromolecules. 15, 99–100 (1982)

    Article  Google Scholar 

  25. Grest, G.S., Kremer, K.: Statistical properties of random cross-linked rubbers. Macromolecules. 23, 4994–5000 (1990)

    Article  Google Scholar 

  26. Stevens, M.J.: Interfacial fracture between highly cross-linked polymer networks and a solid surface: effect of interfacial bond density. Macromolecules. 34, 2710–2718 (2001)

    Article  Google Scholar 

  27. Tsige, M., Stevens, M.J.: Effect of cross-linker functionality on the adhesion of highly crosslinked polymer networks: a molecular dynamics study of epoxies. Macromolecules. 37, 630–637 (2004)

    Article  Google Scholar 

  28. Tsige, M., Lorenz, C.D., Stevens, M.J.: Role of network connectivity on the mechanical properties of highly cross-linked polymers. Macromolecules. 37, 8466–8472 (2004)

    Article  Google Scholar 

  29. Zee, M., Feickert, A.J., Kroll, D.M., Croll, S.G.: Cavitation in crosslinked polymers: molecular dynamics simulations of network formation. Prog. Org. Coat. 83, 55–63 (2015)

    Article  Google Scholar 

  30. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  Google Scholar 

  31. Pascault, J.-P., Sautereau, H., Verdu, J., Williams, R.J.J.: Thermosetting Polymers. Marcel Dekker, New York (2002)

    Book  Google Scholar 

  32. Gillham, J.K.: Formation and properties of thermosetting and high Tg polymeric materials. Polym. Eng. Sci. 26(20), 1429–1433 (1986)

    Article  Google Scholar 

  33. Herrmann, H.J., Hong, D.C., Stanley, H.E.: Backbone and elastic backbone of percolation clusters obtained by the new method of ‘burning’. J. Phys. A Math. Gen. 17, L261–L266 (1984)

    Article  Google Scholar 

  34. Kroll, D.M., Croll, S.G.: Influence of crosslinking functionality, temperature and conversion on heterogeneities in polymer networks. Polymer. 79, 82–90 (2015)

    Article  Google Scholar 

  35. Martin, M.G.: MCCCS Towhee: a tool for Monte Carlo molecular simulation. Mol. Simul. 39(14–15), 1212–1222 (2013)

    Article  Google Scholar 

  36. Smit, B.: Phase diagrams of Lennard-Jones fluids. J. Chem. Phys. 96, 8639–8640 (1992)

    Article  Google Scholar 

  37. Ge, J., Wu, G.-W., Todd, B.D., Sadus, R.J.: Equilibrium and nonequilibrium molecular dynamics methods for determining solid–liquid phase coexistence at equilibrium. J. Chem. Phys. 119, 11017–11023 (2003)

    Article  Google Scholar 

  38. Ahmed, A., Sadus, R.J.: Effect of potential truncations and shifts on the solid liquid phase coexistence of Lennard-Jones fluids. J. Chem. Phys. 133, 124515 (2010)

    Article  Google Scholar 

  39. Witten, T.A., Sander, L.M.: Diffusion-limited aggregation. Phys. Rev. B. 27(9), 5686–5697 (1983)

    Article  Google Scholar 

  40. Meakin, P.: Diffusion-limited aggregation in three dimensions: results from a new cluster–cluster aggregation model. J. Colloid Interface Sci. 102(2), 491–504 (1984)

    Article  Google Scholar 

  41. Heinson, W.R., Chakrabarti, A., Sorensen, C.M.: Divine proportion shape invariance of diffusion limited cluster–cluster aggregates. Aerosol Sci. Technol. 49(9), 786–792 (2015)

    Article  Google Scholar 

  42. Erath, E.H., Spurr, R.A.: Occurrence of globular formations in thermosetting resins. J. Polym. Sci. 35(129), 391–399 (1959)

    Article  Google Scholar 

  43. Racich, J.L., Koutsky, J.A.: Nodular structure in epoxy resins. J. Appl. Polym. Sci. 20(8), 2111–2129 (1976)

    Article  Google Scholar 

  44. Morsch, S., Liu, Y., Lyon, S.B., Gibbon, S.R.: Insights into epoxy network nanostructural heterogeneity using AFM-IR. ACS Appl. Mater. Interfaces. 8, 959–966 (2016)

    Article  Google Scholar 

  45. Sahagun, C.M., Morgan, S.E.: Thermal control of nanostructure and molecular network development in epoxy-amine thermosets. ACS Appl. Mater. Interfaces. 4, 564–572 (2012)

    Article  Google Scholar 

  46. Cuthrell, R.E.: Epoxy polymers II. Macrostructure. J. Appl. Polym. Sci. 12(6), 1263–1278 (1968)

    Article  Google Scholar 

  47. Labana, S.S., Newman, S., Chompff, A.J.: Chemical effects on the ultimate properties of polymer networks in the glassy state. In: Chompff, A.J., Newman, S. (eds.) Polymer Networks, pp. 453–477. New York, Plenum Press (1971)

    Chapter  Google Scholar 

  48. Zee, M.: Structures of crosslinked networks. Master’s thesis, North Dakota State University. ProQuest Dissertations Publishing, 1589686 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors are glad to acknowledge computer access, financial, and administrative support from the North Dakota State University Center for Computationally Assisted Science and Technology and the U.S. Department of Energy through Grant No. DESC0001717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Croll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kroll, D.M., Croll, S.G. (2017). Heterogeneity in Crosslinked Polymer Networks: Molecular Dynamics Simulations. In: Wen, M., Dušek, K. (eds) Protective Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-51627-1_2

Download citation

Publish with us

Policies and ethics