The Research Advances of Nanomaterials Inducing Osteogenic and Chondrogenic Differentiation of Stem Cells

  • Xueping Xie
  • Xiaolong Li
  • Tengfei Zhou
  • Tao Zhang
  • Jinfeng LiaoEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Nanomaterials because of their unique chemical and mechanic properties and biomimetic characteristics have attracted great attention in biomedicine and tissue engineering. Stem cells have the potential of multi-directional differentiation. Nanomaterials inducing osteogenic and chondrogenic differentiation of stem cells promotes the development of bone and cartilage tissue engineering. They are devided into inorganic nanomaterials and polymer nanomaterials. Each material has different effect in stem cell osteogenic and chondrogenic differentiation. Changing the size, shape and surface chemistry would generate new effects. Even more, they can achieve much enhanced osteochondral differentiation of stem cells through surface connected with bioactive molecules such as drugs, proteins and growth factors and incorporated into other nanomaterials. In this chapter, we list some extensive researched nanomaterials and focus on their influence in osteogenic and chondrogenic differentiation of stem cells.


Nanomaterials Stem cell Differentiation Bone Cartilage Tissue engineering 


  1. 1.
    Faghihi F, Baghaban Eslaminejad M. The effect of nano-scale topography on osteogenic differentiation of mesenchymal stem cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014;158(1):5–16.PubMedGoogle Scholar
  2. 2.
    Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006;1(1):15–30.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47(4):477–86.PubMedGoogle Scholar
  4. 4.
    Baghaban M, Faghihi F. Mesenchymal stem cell-based bone engineering for bone regeneration. Regenerative Medicine and Tissue Engineering Cells and Biomaterials. InTech, 2011.Google Scholar
  5. 5.
    Shafiee A, Soleimani M, Chamheidari GA, Seyedjafari E, Dodel M, Atashi A, Gheisari Y. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. J Biomed Mater Res A. 2011;99A(3):467–78.CrossRefGoogle Scholar
  6. 6.
    Shaikjee A, Coville NJ. The synthesis, properties and uses of carbon materials with helical morphology. J Adv Res. 2012;3(3):195–223.CrossRefGoogle Scholar
  7. 7.
    Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009;4(1):66–80.CrossRefGoogle Scholar
  8. 8.
    Scott TG, Blackburn G, Ashley M, Bayer IS, Ghosh A, Biris AS, Biswas A. Advances in bionanomaterials for bone tissue engineering. J Nanosci Nanotechnol. 2013;13(1):1–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Kleinman HK, Philp D, Hoffman MP. Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol. 2003;14(5):526–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Walmsley GG, Mcardle A, Tevlin R. Nanotechnology in bone tissue engineering. Nanomed Nanotechnol Biol Med. 2015;11(5):1253–63.CrossRefGoogle Scholar
  11. 11.
    Kim K, Fisher JP. Nanoparticle technology in bone tissue engineering. J Drug Target. 2007;15(4):241–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17(8):2950–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res. 2000;60(16):4440–5.PubMedGoogle Scholar
  14. 14.
    Trewyn BG, Slowing II, Giri S, Chen HT, Lin VS. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res. 2007;40(9):846–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhuang J, Kuo CH, Chou LY, Liu DY, Weerapana E, Tsung CK. Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano. 2014;8(3):2812–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Huang Z, Pei N, Wang Y, Xie X, Sun A. Deep magnetic capture of magnetically loaded cells for spatially targeted therapeutics. Biomaterials. 2010;31(8):2130–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Jevtic M, Mitric M, Skapin S, Jancar B, Ignjatovic N, Uskokovic D. Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation. Cryst Growth Des. 2008;8(8):2217–22.CrossRefGoogle Scholar
  18. 18.
    Salarian M, Xu WZ, Wang Z, Sham TK, Charpentier PA. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties. ACS Appl Mater Interfaces. 2014;6(19):16918–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Lin K, Chang J, Cheng R, Ruan M. Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution. Mater Lett. 2007;61(s 8–9):1683–7.CrossRefGoogle Scholar
  20. 20.
    Huang Y, Zhou G, Zheng L, Liu H, Niu X, Fan Y. Micro−/nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage. Nanoscale. 2012;4(7):2484–90.PubMedCrossRefGoogle Scholar
  21. 21.
    Nagasaki R, Mukudai Y, Yoshizawa Y, Nagasaki M, Shiogama S, Suzuki M, Kondo S, Shintani S, Shirota T. A combination of low-intensity pulsed ultrasound and nanohydroxyapatite concordantly enhances osteogenesis of adipose-derived stem cells from buccal fat pad. Cell Med. 2015;7(3):123–31.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nielsen FH. Dietary fat composition modifies the effect of boron on bone characteristics and plasma lipids in rats. Biofactors. 2004;20(3):161–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Ciftci E, Köse S, Korkusuz P, Timuçin M, Korkusuz F. Boron containing nano hydroxyapatites (b-n-hap) stimulate mesenchymal stem cell adhesion, proliferation and differentiation. Key Eng Mater. 2014;631(3):373–8.CrossRefGoogle Scholar
  24. 24.
    Lock J, Liu H. Nanomaterials enhance osteogenic differentiation of human mesenchymal stem cells similar to a short peptide of BMP-7. Int J Nanomedicine. 2011;6(6):2769–77.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Tatavarty R, Ding H, Lu G, Taylor RJ, Bi X. Synergistic acceleration in the osteogenesis of human mesenchymal stem cells by graphene oxide-calcium phosphate nanocomposites. Chem Commun. 2014;50(62):8484–7.CrossRefGoogle Scholar
  26. 26.
    Wang G, Qiu J, Zheng L, Ren N, Li J, Liu H, Miao J. Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan-HAp scaffold. J Biomater Sci Polym Ed. 2014;25(16):1813–27.PubMedCrossRefGoogle Scholar
  27. 27.
    Siddiqui N, Pramanik K, Jabbari E. Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano β-tricalcium phosphate porous scaffolds crosslinked with genipin. Mater Sci Eng C. 2015;54:76–83.CrossRefGoogle Scholar
  28. 28.
    Jeong N, Park YC, Lee KM, Lee JH, Cha M. Effect of graphitic layers encapsulating single-crystal apatite nanowire on the osteogenesis of human mesenchymal stem cells. J Phys Chem B. 2014;118(48):13849–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Kim SE, Lee DW, Yun YP, Shim KS, Jeon DI, Rhee JK, Kim HJ, Park K. Heparin-immobilized hydroxyapatite nanoparticles as a lactoferrin delivery system for improving osteogenic differentiation of adipose-derived stem cells. Biomed Mater. 2016;11(2):025004.PubMedCrossRefGoogle Scholar
  30. 30.
    Joseph Nathanael A, Mangalaraj D, Chen PC, Ponpandian N. Mechanical and photocatalytic properties of hydroxyapatite/titania nanocomposites prepared by combined high gravity and hydrothermal process. Compos Sci Technol. 2010;70(3):419–26.CrossRefGoogle Scholar
  31. 31.
    Mooney E, Dockery P, Greiser U, Murphy M, Barron V. Carbon nanotubes and mesenchymal stem cells: biocompatibility, proliferation and differentiation. Nano Lett. 2008;8(8):2137–43.PubMedCrossRefGoogle Scholar
  32. 32.
    Li X, Liu H, Niu X, Yu B, Fan Y, Feng Q, Cui F, Watari F. The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials. 2012;33(19):4818–27.PubMedCrossRefGoogle Scholar
  33. 33.
    Namgung S, Baik KY, Park J, Hong S. Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes. ACS Nano. 2011;5(9):7383–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Xu B, Ju Y, Cui Y, Song G. Carbon nanotube array inducing osteogenic differentiation of human mesenchymal stem cells. Mater Sci Eng C. 2015;51:182–8.CrossRefGoogle Scholar
  35. 35.
    Ramón-Azcón J, Ahadian S, Obregón R, Shiku H, Ramalingam M, Matsue T. Applications of carbon nanotubes in stem cell research. J Biomed Nanotechnol. 2014;10(10):2539–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Liu D, Yi C, Zhang D, Zhang J, Yang M. Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes. ACS Nano. 2010;4(4):2185–95.PubMedCrossRefGoogle Scholar
  37. 37.
    Barrientos-Duran A, Carpenter EM, Zur Nieden NI, Malinin TI, Rodriguez-Manzaneque JC, Zanello LP. Carboxyl-modified single-wall carbon nanotubes improve bone tissue formation in vitro and repair in an in vivo rat model. Int J Nanomedicine. 2014;9(6):4277–91.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Nayak TR, Cai W. Engineering carbon nanomaterials for stem cell-based tissue engineering. In: Cai W, editor. Engineering in translational medicine. London: Springer; 2014. p. 641–65.CrossRefGoogle Scholar
  39. 39.
    Holmes B, Castro NJ, Li J, Keidar M, Zhang LG. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes. Nanotechnology. 2013;24(36):365102.PubMedCrossRefGoogle Scholar
  40. 40.
    Ruiz ON, Fernando KA, Wang B, Brown NA, Luo PG, Mcnamara ND, Vangsness M, Sun YP, Bunker CE. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano. 2011;5(10):8100–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee WC, Lim CH, Shi H, Tang LA, Wang Y, Lim CT, Loh KP. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano. 2011;5(9):7334–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Mo X, Wei Y, Zhang X, Cai Q, Shen Y, Dai X, Meng S, Liu X, Liu Y, Hu Z, Deng X. Enhanced stem cell osteogenic differentiation by bioactive glass functionalized graphene oxide substrates. J Nanomater. 2016;2016:1–11.CrossRefGoogle Scholar
  43. 43.
    Liu D, Yi C, Fong CC, Jin Q, Wang Z, Yu WK, Sun D, Zhao J, Yang M. Activation of multiple signaling pathways during the differentiation of mesenchymal stem cells cultured in a silicon nanowire microenvironment. Nanomedicine. 2014;10(6):1153–63.PubMedGoogle Scholar
  44. 44.
    Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS, Wu SH, Hsu SC, Liu HM, Mou CY. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett. 2007;7:149–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Curran JM, Chen R, Hunt JA. The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials. 2006;27(27):4783–93.PubMedCrossRefGoogle Scholar
  46. 46.
    Liu Y, Huang N, Yu Y, Zheng C, Deng N, Liu J. Bioactive SiO2@Ru nanoparticles for osteogenic differentiation of mesenchymal stem cells via activation of Akt signaling pathways. J Mater Chem B. 2016;4(25):4389–401.CrossRefGoogle Scholar
  47. 47.
    Singh N, Karambelkar A, Gu L, Lin K, Miller JS, Chen CS, Sailor MJ, Bhatia SN. Bioresponsive mesoporous silica nanoparticles for triggered drug release. J Am Chem Soc. 2011;133(49):19582–5.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Chen Z, Li X, He H, Ren Z, Liu Y, Wang J, Li Z, Shen G, Han G. Mesoporous silica nanoparticles with manipulated microstructures for drug delivery. Colloids Surf B Biointerfaces. 2012;95:274–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Han P, Wu C, Xiao Y. The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells. Biomater Sci. 2013;1(4):379–92.CrossRefGoogle Scholar
  50. 50.
    Sun J, Wei L, Liu X, Li J, Li B, Wang G, Meng F. Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. Acta Biomater. 2008;5(4):1284–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Chen W, Tsai PH, Hung Y, Chiou SH, Mou CY. Nonviral cell labeling and differentiation agent for induced pluripotent stem cells based on mesoporous silica nanoparticles. ACS Nano. 2013;7(10):8423–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Kim TH, Eltohamy M, Kim M, Perez RA, Kim JH, YunYR JJH, Lee EJ, Knowles JC, Kim HW. Therapeutic foam scaffolds incorporating biopolymer-shelled mesoporous nanospheres with growth factors. Acta Biomater. 2014;10(6):2612–21.PubMedCrossRefGoogle Scholar
  53. 53.
    Shadjou N, Hasanzadeh M. Silica-based mesoporous nanobiomaterials as promoter of bone regeneration process. J Biomed Mater Res A. 2015;103(11):3703–16.PubMedCrossRefGoogle Scholar
  54. 54.
    Kim TH, Kim M, Eltohamy M, Yun YR, Jang JH, Kim HW. Efficacy of mesoporous silica nanoparticles in delivering BMP-2 plasmid DNA for in vitro osteogenic stimulation of mesenchymal stem cells. J Biomed Mater Res A. 2013;101(6):1651–60.PubMedCrossRefGoogle Scholar
  55. 55.
    Neumann A, Christel A, Kasper C, Behrens P. BMP2-loaded nanoporous silica nanoparticles promote osteogenic differentiation of human mesenchymal stem cells. RSC Adv. 2013;3(46):24222.CrossRefGoogle Scholar
  56. 56.
    Kim HK, Kim JH, Park DS, Park KS, Kang SS, Lee JS, Jeong MH, Yoon TR. Osteogenesis induced by a bone forming peptide from the prodomain region of BMP-7. Biomaterials. 2012;33(29):7057–63.PubMedCrossRefGoogle Scholar
  57. 57.
    Luo Z, Deng Y, Zhang R, Wang M, Bai Y, Zhao Q, Lyu Y, Wei J, Wei S. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering. Colloids Surf B Biointerfaces. 2015;131:73–82.PubMedCrossRefGoogle Scholar
  58. 58.
    Sundaramurthi D, Jaidev LR, Ramana LN, Sethuraman S, Krishnan UM. Osteogenic differentiation of stem cells on mesoporous silica nanofibers. RSC Adv. 2015;5(85):69205–14.CrossRefGoogle Scholar
  59. 59.
    Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater. 2013;25(24):3329–36.PubMedCrossRefGoogle Scholar
  60. 60.
    Kim MO, Jung H, Kim SC, Park JK, Seo YK. Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Med. 2015;35(1):153–60.PubMedGoogle Scholar
  61. 61.
    Sun J, Liu X, Huang J, Song L, Chen Z, Liu H, Li Y, Zhang Y, Gu N. Magnetic assembly-mediated enhancement of differentiation of mouse bone marrow cells cultured on magnetic colloidal assemblies. Sci Rep. 2014;4:5125.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Schafer R, Bantleon R, Kehlbach R, Siegel G, Wiskirchen J, Wolburg H, Kluba T, Eibofner F, Northoff H, Claussen CD, Schlemmer HP. Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles. BMC Cell Biol. 2010;11(26):22–38.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Wang Q, Chen B, Cao M, Sun J, Wu H, Zhao P, Xing J, Yang Y, Zhang X, Ji M, Gu N. Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials. 2016;86:11–20.PubMedCrossRefGoogle Scholar
  64. 64.
    Levy I, Sher I, Corem-Salkmon E, Ziv-Polat O, Meir A, Treves AJ, Nagler A, Kalter-Leibovici O, Margel S, Rotenstreich Y. Bioactive magnetic near Infra-Red fluorescent core-shell iron oxide/human serum albumin nanoparticles for controlled release of growth factors for augmentation of human mesenchymal stem cell growth and differentiation. J Nanobiotechnol. 2015;13(1):1–14.CrossRefGoogle Scholar
  65. 65.
    Farrell E, Wielopolski P, Pavljasevic P, van Tiel S, Jahr H, Verhaar J, Weinans H, Krestin G, FJ O’B, van Osch G, Bernsen M. Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo. Biochem Biophys Res Commun. 2008;369(4):1076–81.PubMedCrossRefGoogle Scholar
  66. 66.
    Chang YK, Liu YP, Ho JH, Hsu SC, Lee OK. Amine-surface-modified superparamagnetic iron oxide nanoparticles interfere with differentiation of human mesenchymal stem cells. J Orthop Res. 2012;30(9):1499–506.PubMedCrossRefGoogle Scholar
  67. 67.
    Liu X, Huang H, Liu G, Zhou W, Chen Y, Jin Q, Ji J. Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions. Nanoscale. 2013;5(9):3982–91.PubMedCrossRefGoogle Scholar
  68. 68.
    Yi C, Liu D, Fong CC, Zhang J, Yang M. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano. 2010;4(11):6439–48.PubMedCrossRefGoogle Scholar
  69. 69.
    Ko WK, Heo DN, Moon HJ, Lee SJ, Bae MS, Lee JB, Sun IC, Jeon HB, Park HK, Kwon IK. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci. 2015;438:68–76.PubMedCrossRefGoogle Scholar
  70. 70.
    Li J, Li JJ, Zhang J, Wang X, Kawazoe N, Chen G. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale. 2016;8(15):7992–8007.PubMedCrossRefGoogle Scholar
  71. 71.
    Li JJ, Kawazoe N, Chen G. Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis. Biomaterials. 2015;54:226–36.PubMedCrossRefGoogle Scholar
  72. 72.
    Choi SY, Song MS, Ryu PD, Lam AT, Joo SW, Lee SY. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/beta-catenin signaling pathway. Int J Nanomedicine. 2015;10:4383–92.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Long M, Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials. 1998;19(18):1621–39.PubMedCrossRefGoogle Scholar
  74. 74.
    Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30–42.PubMedCrossRefGoogle Scholar
  75. 75.
    Marco A, Adriana O, Antonietta B, Michele G, Agostino G, Luigi G. Bone marrow mesenchymal stem cell response to nano-structured oxidized and turned titanium surfaces. Clin Oral Implants Res. 2012;23(23):733–40.Google Scholar
  76. 76.
    Hou Y, Cai K, Li J, Chen X, Lai M, Hu Y, Luo Z, Ding X, Xu D. Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. Int J Nanomedicine. 2013;8:3619–30.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Park J, Bauer S, Vond MK, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007;7(6):1686–91.PubMedCrossRefGoogle Scholar
  78. 78.
    Rile EH, Lane JM, Urist MR, Lyons KM, Lieberman JR. Bone morphogenetic protein-2: biology and applications. Clin Orthop Relat Res. 1996;324(324):39–46.CrossRefGoogle Scholar
  79. 79.
    Lai M, Cai K, Zhao L, Chen X, Hou Y, Yang Z. Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules. 2011;12(4):1097–105.PubMedCrossRefGoogle Scholar
  80. 80.
    Liu W, Su P, Chen S, Wang N, Wang J, Liu Y, Ma Y, Li H, Zhang Z, Webster TJ. Antibacterial and osteogenic stem cell differentiation properties of photoinduced TiO(2) nanoparticle-decorated TiO(2) nanotubes. Nanomedicine. 2015;10(5):713–23.PubMedCrossRefGoogle Scholar
  81. 81.
    Holinka J, Pilz M, Kubista B, Presterl E, Windhager R. Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. Bone Joint J. 2013;95-B(5):678–82.PubMedCrossRefGoogle Scholar
  82. 82.
    Zheng C, Wang J, Liu Y, Yu Q, Liu Y, Deng N, Liu J. Functional Selenium Nanoparticles Enhanced Stem Cell Osteoblastic Differentiation through BMP Signaling Pathways. Adv Funct Mater. 2014;24(43):6872–83.CrossRefGoogle Scholar
  83. 83.
    Kim J, Lee KY, Lee CM. Selenium Nanoparticles Formed by Modulation of Carrageenan Enhance Osteogenic Differentiation of Mesenchymal Stem Cells. J Nanosci Nanotechnol. 2016;16(3):2482–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Hebeish A, El-Rafie MH, El-Sheikh MA, Seleem AA, El-Naggar ME. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol. 2014;65(5):509–15.PubMedCrossRefGoogle Scholar
  85. 85.
    Liu X, Lee PY, Ho CM, Yan C, Che CM. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010;5(3):468–75.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang R, Lee P, Lui VC, Chen Y, Liu X, Lok CN, To M, Yeung KW, Wong KK. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine. 2015;11(8):1949–59.PubMedGoogle Scholar
  87. 87.
    Qin H, Zhu C, An Z, Jiang Y, Zhao Y, Wang J, Liu X, Hui B, Zhang X, Wang Y. Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Int J Nanomedicine. 2014;9(2):2469–78.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Samberg ME, Mente P, He T, King MW, Monteiro-Riviere NA. In vitro biocompatibility and antibacterial efficacy of a degradable poly (L-lactide-co-epsilon-caprolactone) copolymer incorporated with silver nanoparticles. Ann Biomed Eng. 2014;42(7):1482–93.PubMedCrossRefGoogle Scholar
  89. 89.
    Liu X, He W, Fang Z, Kienzle A, Feng Q. Influence of silver nanoparticles on osteogenic differentiation of human mesenchymal stem cells. J Biomed Nanotechnol. 2014;10(7):1277–85.PubMedCrossRefGoogle Scholar
  90. 90.
    Sengstock C, Diendorf J, Epple M, Schildhauer TA, Koller M. Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein J Nanotechnol. 2014;5(1):2058–69.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Albers CE, Hofstetter W, Siebenrock KA, Landmann R, Klenke FM. In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology. 2013;7(1):30–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem. 2007;12(4):527–34.PubMedCrossRefGoogle Scholar
  93. 93.
    Zhao C, Tan A, Pastorin G, Ho HK. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv. 2013;31(5):654–68.PubMedCrossRefGoogle Scholar
  94. 94.
    Seyedjafari E, Soleimani M, Ghaemi N, Sarbolouki MN. Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. J Mater Sci Mater Med. 2011;22(1):165–74.PubMedCrossRefGoogle Scholar
  95. 95.
    Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials. 2007;28(2):316–25.PubMedCrossRefGoogle Scholar
  96. 96.
    Liu H, Webster TJ. Enhanced biological and mechanical properties of nanophase ceramic in polymer composites with nano-scale dispersion compared to micron-scale agglomeration: from 2D surface to 3D printed structure. Mater Sci Eng C. 2011;31(2):77–89.CrossRefGoogle Scholar
  97. 97.
    Sun F, Yang Q, Weng W, Zhang Y, Yu Y, Hong A, Ji Y, Pan Q. Chd4 and associated proteins function as corepressors of Sox9 expression during BMP-2-induced chondrogenesis. J Bone Miner Res. 2013;28(9):1950–61.PubMedCrossRefGoogle Scholar
  98. 98.
    Jeon SY, Park JS, Yang HN, Woo DG, Park KH. Co-delivery of SOX9 genes and anti-Cbfa-1 siRNA coated onto PLGA nanoparticles for chondrogenesis of human MSCs. Biomaterials. 2012;33(17):4413–23.PubMedCrossRefGoogle Scholar
  99. 99.
    Jeon SY, Park JS, Yang HN, Lim HJ, Yi SW, Park H, Park KH. Co-delivery of Cbfa-1-targeting siRNA and SOX9 protein using PLGA nanoparticles to induce chondrogenesis of human mesenchymal stem cells. Biomaterials. 2014;35(28):8236–48.PubMedCrossRefGoogle Scholar
  100. 100.
    Wang S, Castro R, An X, Song C, Luo Y, Shen M, Tomas H, Zhu M, Shi X. Electrospun laponite-doped poly(lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. J Mater Chem. 2012;22(44):23357.CrossRefGoogle Scholar
  101. 101.
    Luo Y, Shen H, Fang Y, Cao Y, Huang J, Zhang M, Dai J, Shi X, Zhang Z. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces. 2015;7(11):6331–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Hild N, Schneider OD, Mohn D, Luechinger NA, Koehler FM, Hofmann S, Vetsch JR, Thimm BW, Muller R, Stark WJ. Two-layer membranes of calcium phosphate/collagen/PLGA nanofibres: in vitro biomineralisation and osteogenic differentiation of human mesenchymal stem cells. Nanoscale. 2011;3(2):401–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Schofer MD, Boudriot U, Wack C, Leifeld I, Grabedunkel C, Dersch R, Rudisile M, Wendorff JH, Greiner A, Paletta JRJ, Fuchs-Winkelmann S. Influence of nanofibers on the growth and osteogenic differentiation of stem cells: a comparison of biological collagen nanofibers and synthetic PLLA fibers. J Mater Sci Mater Med. 2009;20(3):767–74.PubMedCrossRefGoogle Scholar
  104. 104.
    Seyedjafari E, Soleimani M, Ghaemi N, Sarbolouki MN. Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. J Mater Sci Mater Med. 2011;22(1):165–74.PubMedCrossRefGoogle Scholar
  105. 105.
    Smith LA, Liu X, Hu J, Ma PX. The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials. 2010;31(21):5526–35.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hu J, Feng K, Liu X, Ma PX. Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials. 2009;30(28):5061–7.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Spadaccio C, Rainer A, Trombetta M, Vadala G, Chello M, Covino E, Denaro V, Toyoda Y, Genovese JA. Poly-L-lactic acid/hydroxyapatite electrospun nanocomposites induce chondrogenic differentiation of human MSC. Ann Biomed Eng. 2009;37(7):1376–89.PubMedCrossRefGoogle Scholar
  108. 108.
    Duan S, Yang X, Mei F, Tang Y, Li X, Shi Y, Mao J, Zhang H, Cai Q. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials. J Biomed Mater Res A. 2015;103(4):1424–35.PubMedCrossRefGoogle Scholar
  109. 109.
    Kumar G, Tison CK, Chatterjee K, Pine PS, McDaniel JH, Salit ML, Young MF, Simon Jr CG. The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials. 2011;32(35):9188–96.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater. 2013;25(24):3329–36.PubMedCrossRefGoogle Scholar
  111. 111.
    Ambre AH, Katti DR, Katti KS. Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds. J Biomed Mater Res A. 2013;101(9):2644–60.PubMedCrossRefGoogle Scholar
  112. 112.
    Gaharwar AK, Mukundan S, Karaca E, Dolatshahi-Pirouz A, Patel A, Rangarajan K. Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Tissue Eng A. 2014;20(15–16):2088–101.CrossRefGoogle Scholar
  113. 113.
    Lu Z, Roohani-Esfahani SI, Kwok PC, Zreiqat H. Osteoblasts on rod shaped hydroxyapatite nanoparticles incorporated PCL film provide an optimal osteogenic niche for stem cell differentiation. Tissue Eng Part A. 2011;17(11–12):1651–61.PubMedCrossRefGoogle Scholar
  114. 114.
    Binulal NS, Natarajan A, Menon D, Bhaskaran VK, Mony U, Nair SV. PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering. J Biomater Sci Polym Ed. 2014;25(4):325–40.PubMedCrossRefGoogle Scholar
  115. 115.
    Wang H, Leeuwenburgh SC, Li Y, Jansen JA. The use of micro- and nanospheres as functional components for bone tissue regeneration. Tissue Eng Part B Rev. 2012;18(1):24–39.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xueping Xie
    • 1
  • Xiaolong Li
    • 1
  • Tengfei Zhou
    • 1
  • Tao Zhang
    • 1
  • Jinfeng Liao
    • 1
    Email author
  1. 1.State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina

Personalised recommendations