Electrospun Fibrous Scaffolds for Cartilage Tissue Regeneration

  • Guo Li
  • Changyue Xue
  • Sirong Shi
  • Shu Zhang
  • Yunfeng LinEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Due to its poor self-repair ability, the cartilage injury has been a great challenge in clinical work. The conventional therapies for cartilage injury mostly form fibrocartilage with weaker strength and flexibility compared to natural cartilage. The development of tissue engineering technology provides a new approach for cartilage repair and regeneration. An appropriate scaffold is one of key factors in cartilage tissue engineering. The continuous nanofibers or submicron fibers obtained by electrospinning, a newly emerging technologies that has been increasingly emphasized for its simple manufacturing process and high efficiency, have been widely applied as scaffolds in tissue engineering, for its structure being similar with natural extracellular matrix. This chapter will summarize the current knowledge related to electrospun fibrous scaffolds in cartilage tissue engineering, especially focus on the materials, topography, modifications of electrospun fibrous scaffolds, and new electrospinning approaches in cartilage tissue engineering.


Electrospun fiber Scaffolds Cartilage tissue regeneration Nanomaterials 


  1. 1.
    Getgood A, Bhullar T, Rushton N. Current concepts in articular cartilage repair. Orthop Trauma. 2009;23:189–200.CrossRefGoogle Scholar
  2. 2.
    Athanasiou KA, Darling EM, Hu JC. Articular cartilage tissue engineering. Synth Lect Tissue Eng. 2009;1(1):1–182.Google Scholar
  3. 3.
    Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials. 2000;21(5):431–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Lasanianos NG, Kanakaris NK. Chondral lesions[M]/trauma and orthopaedic classifications. London: Springer; 2015. p. 501–4.Google Scholar
  5. 5.
    Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60(2):243–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Bryant SJ, Anseth KS. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res A. 2003;64(1):70–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Yang Q, Peng J, Guo Q, Huang J, Zhang L, Yao J, Yang F, Wang S, Xu W, Wang A, Lu S. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials. 2008;29(15):2378–87.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang Y, Bella E, Lee CS, et al. The synergistic effects of 3-D porous silk fbroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Biomaterials. 2010;31(17):4672–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Gong YY, Xue JX, Zhang WJ, et al. A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials. 2011;32(9):2265–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8):762–98.CrossRefGoogle Scholar
  11. 11.
    Zhao W, Jin X, Cong Y, Liu Y, Fu J. Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol. 2013;88(3):327–39.CrossRefGoogle Scholar
  12. 12.
    Shields KJ, Beckman MJ, Bowlin GL, Wayne JS. Mechanical properties of cellular proliferation of electrospun collagen type II. Tissue Eng. 2001;10:1510–7.CrossRefGoogle Scholar
  13. 13.
    Matthews JA, Boland ED, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen type II: a feasibility study. J Bioact Compat Polym. 2003;18:125–34.CrossRefGoogle Scholar
  14. 14.
    Kim IL, Khetan S, Baker BM, Chen CS, Burdick JA. Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues. Biomaterials. 2013;34(22):5571–80.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Chiu JB, Luu YK, Fang D, Hsiao B, Chu B, Hadjiargyrou M. Electrospun nanofibrous scaffolds for biomedical applications. J Biomed Nanotechnol. 2005;1:115–32.CrossRefGoogle Scholar
  16. 16.
    Subramanian A, Lin HY, Vu D, Larsen G. Synthesis and evaluation of scaffolds prepared from chitosan fibers for potential use in cartilage tissue engineering. Biomed Sci Instrum. 2004;40:117–22.PubMedGoogle Scholar
  17. 17.
    Subramanian A, Vu D, Larsen G, Lin HY. Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering. J Biomater Sci Polym Ed. 2005;16:861–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Baek HS, Park YH, Ki CS, Park JC, Rah DK. Enhanced chondrogenic responses of articular chondrocytes onto porous silk fibroin scaffolds treated with microwave-induced argon plasma. Surf Coat Technol. 2008;202:5794–7.CrossRefGoogle Scholar
  19. 19.
    Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013;65:457–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Janjanin S, Li WJ, Morgan MT, Shanti RM, Tuan RS. Mold-shaped nanofiber scaffold-based cartilage engineering using human mesenchymal stem cells and bioreactor. J Surg Res. 2008;149:47–56.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chen JP, Su CH. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater. 2011;7:234–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang S, Chen L, Jiang Y, Cai Y, Xu G, Tong T, Zhang W, Wang L, Ji J, Shi P, Ouyang HW. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater. 2013;9(7):7236–47.PubMedCrossRefGoogle Scholar
  23. 23.
    Li W, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005;26:599–609.PubMedCrossRefGoogle Scholar
  24. 24.
    Liao J, Guo X, Grande-Allen KJ, Kasper FK, Mikos AG. Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials. 2010;31:8911–20.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Jakubova R, Mickova A, Buzgo M, Rampichova M, Prosecka E, Tvrdik D, Amler E. Immobilization of thrombocytes on PCL nanofibres enhances chondrocyte proliferationin vitro. Cell Prolif. 2011;44:183–91.PubMedCrossRefGoogle Scholar
  26. 26.
    Li G, Fu N, Xie J, Fu Y, Deng S, Cun X, Wei X, Peng Q, Cai X, Lin Y. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) based electrospun 3D scaffolds for delivery of autogeneic chondrocytes and adipose-derived stem cells: evaluation of cartilage defects in rabbit. J Biomed Nanotechnol. 2015;11:1–12.CrossRefGoogle Scholar
  27. 27.
    Fu N, Deng S, Fu Y, Li G, Cun X, Hao L, Wei X, Cai X, Peng Q, Lin Y. Electrospun P34HB fibres: a scaffold for tissue engineering. Cell Prolif. 2014;47:465–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA mi-crospheres. Adv Drug Deliv Rev. 2012;64:72–82.CrossRefGoogle Scholar
  29. 29.
    Xue J, Feng B, Zheng R, Lu Y, Zhou G, Liu W, Cao Y, Zhang Y, Zhang WJ. Engineering ear-shaped cart Mold-shaped nanofiber scaffold-based cartilage engineering using human mesenchymal stem cells and bioreactor ilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials. 2013;34:2624–31.PubMedCrossRefGoogle Scholar
  30. 30.
    He X, Feng B, Huang C, Wang H, Ge Y, Hu R, Yin M, Xu Z, Wang W, Fu W, Zheng J. Electrospun gelatin/polycaprolactone nanofbrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering. Int J Nanomed. 2015;10:2089–99.Google Scholar
  31. 31.
    Zheng R, Duan H, Xue J, Liu Y, Feng B, Zhao S, Zhu Y, Liu Y, He A, Zhang W, Liu W, Cao Y. The influence of Gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials. 2014;35:152–64.PubMedCrossRefGoogle Scholar
  32. 32.
    He X, Fu W, Feng B, Wang H, Liu Z, Yin M, Wang W, Zheng J. Electrospun collagen/poly(L-lactic acid-co-epsilon-caprolactone) hybrid nanofibrous membranes combining with sandwich construction model for cartilage tissue engineering. J Nanosci Nanotechnol. 2013;13(6):3818–25.PubMedCrossRefGoogle Scholar
  33. 33.
    He X, Fu W, Feng B, Wang H, Liu Z, Yin M, Wang W, Zheng J. Electrospun collagen-poly(L-lactic acid-co-ε-caprolactone) membranes for cartilage tissue engineering. Regen Med. 2013;8(4):425–36.PubMedCrossRefGoogle Scholar
  34. 34.
    Lin YX, Ding ZY, Zhou XB, Li ST, Xie DM, Li ZZ, Sun GD. In vitro and in vivo evaluation of the developed PLGA/HAp/Zein scaffolds for bone-cartilage interface regeneration. Biomed Environ Sci. 2015;28(1):1–12.PubMedGoogle Scholar
  35. 35.
    Choi S, Cho TJ, Kwon SK, Lee G, Cho J. Chondrogenesis of periodontal ligament stem cells by transforming growth factor-β3 and bone morphogenetic protein-6 in normal healthy impacted third molar. Int J Oral Sci. 2013;5:7–13.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Xue JX, Gong YY, Zhou GD, Liu W, Cao Y, Zhang WJ. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets. Biomaterials. 2012;33:5832–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Rizk A, Rabie ABM. Human dental pulp stem cells expressing transforming growth factor β3 transgene for cartilage-like tissue engineering. Cytotherapy. 2013;15:1–14.CrossRefGoogle Scholar
  38. 38.
    Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005;26:6176–84.PubMedCrossRefGoogle Scholar
  39. 39.
    Fu G, Soboyejo WO. Cell/surface interactions of human osteo-sarcoma (HOS) cells and micro-patterned polydimelthylsiloxane (PDMS) surfaces. Mater Sci Eng C. 2009;29(6):2011–8.CrossRefGoogle Scholar
  40. 40.
    Mustafa K, Oden A, Wennerberg A, Hultenby K, Arvidson K. The influence of surface topography of ceramic abutments on the attachment and proliferation of human oral fibroblasts. Biomaterials. 2005;26(4):373–81.PubMedCrossRefGoogle Scholar
  41. 41.
    Yang Y, Kusano K, Frei H, Rossi F, Brunette DM, Putnins EE. Microtopographical regulation of adult bone marrow progenitor cells chondrogenic and osteogenic gene and protein expressions. J Biomed Mater Res A. 2010;95(1):294–304.PubMedCrossRefGoogle Scholar
  42. 42.
    Baker BM, Handorf AM, Ionescu LC, Li WJ, Mauck RL. New directions in nanofibrous scaffolds for soft tissue engineering and regeneration. Expert Rev Med Devices. 2009;6(5):515–32.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Qi H, Du Y, Wang L, Kaji H, Bae H, Khademhosseini A. Patterned differentiation of individual embryoid bodies in spatially organized 3D hybrid microgels. Adv Mater. 2010;22(46):5276–81.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Mitra J, Jain S, Sharma A, Basu B. Patterned growth and differentiation of neural cells on polymer derived carbon substrates with micro/nano structures in vitro. Carbon. 2013;65:140–55.CrossRefGoogle Scholar
  45. 45.
    Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 2004;25(10):1883–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Nathan AS, Baker BM, Nerurkar NL, Mauck RL. Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater. 2011;7(1):57–66.PubMedCrossRefGoogle Scholar
  47. 47.
    Shafiee A, Seyedjafari E, Taherzadeh ES, Dinarvand P, Soleimani M, Ai J. Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds. Mater Sci Eng C. 2014;40:445–54.CrossRefGoogle Scholar
  48. 48.
    Rowland DCL, Aquilina T, Klein A, Hakimi O, Pierre AM, Andrew JC, Sarah JBS. A comparative evaluation of the effect of polymer chemistry and fiber orientation on mesenchymal stem cell differentiation. J Biomed Mater Res A. 2016;104(11):2843–53. doi: 10.1002/jbm.a.35829.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jia S, Liu L, Pan W, Meng G, Duan C, Zhan L, Xiong Z, Liu J. Oriented cartilage extracellular matrix-derived scaffold for cartilage tissue engineering. J Biosci Bioeng. 2012;113(5):647–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng Part A. 2009;15:913–21.PubMedCrossRefGoogle Scholar
  51. 51.
    Shanmugasundaram S, Chaudhry H, Arinzeh TL. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng Part A. 2011;17:831–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Bean AC, Tuan RS. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun Poly(ε-caprolactone) scaffolds. Biomed Mater. 2015;10(1):015018.Google Scholar
  53. 53.
    Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials. 2006;27:596–606.PubMedCrossRefGoogle Scholar
  54. 54.
    Takahashi Y, Tabata Y. Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J Biomater Sci Polym Ed. 2004;15:41–57.PubMedCrossRefGoogle Scholar
  55. 55.
    Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF. Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res A. 2010;94:1312–20.PubMedGoogle Scholar
  56. 56.
    Christopherson GT, Song H, Mao H-Q. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials. 2009;30:556–64.PubMedCrossRefGoogle Scholar
  57. 57.
    Levorson EJ, Sreerekha PR, Chennazhi KP, Kasper FK, Nair SV, Mikos AG. Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration. Biomed Mater. 2013;8(1):014103.PubMedCrossRefGoogle Scholar
  58. 58.
    Srinivasan S, Jayakumar R, Chennazhi KP, Levorson EJ, Mikos AG, Nair SV. Multiscale fibrous scaffolds in regenerative medicine. Adv Polym Sci. 2012;246:1–20.Google Scholar
  59. 59.
    Thibault MM, Hoemann CD, Buschmann MD. Fibronectin, vitronectin, and collagen I induce chemotaxis and haptotaxis of human and rabbit mesenchymal stem cells in a standardized transmembrane assay. Stem Cells Dev. 2007;16:489.PubMedCrossRefGoogle Scholar
  60. 60.
    Levorson EJ, Hu O, Mountziaris PM, Kasper FK, Mikos AG. Cell-derived polymer/extracellular matrix composite scaffolds for cartilage regeneration, part 2: construct devitalization and determination of chondroinductive capacity. Tissue Eng Part C. 2014;20(4):358–72.CrossRefGoogle Scholar
  61. 61.
    Shashurin A, Keidar M, Bronnikov S, Jurjus RA, Stepp MA. Living tissue under treatment of cold plasma atmospheric jet. Appl Phys Lett. 2008;93(18):181501. doi: 10.1063/1.3020223.CrossRefGoogle Scholar
  62. 62.
    Keidar M, Shashurin A, Volotskova O, Stepp MA, Srinivasan P, Sandler A, et al. Cold atmospheric plasma in cancer therapy. Phys Plasmas. 2013;20(5):057101–8.CrossRefGoogle Scholar
  63. 63.
    Kolb JF, Mohamed A-AH, Price RO, Swanson RJ, Bowman A, Chiavarini RL, et al. Cold atmospheric pressure air plasma jet for medical applications. Appl Phys Lett. 2008;92(24):241501–3.CrossRefGoogle Scholar
  64. 64.
    Li Y-F, Shimizu T, Zimmermann JL, Morfill GE. Cold atmospheric plasma for surface disinfection. Plasma Process Polym. 2012;9(6):585–9.CrossRefGoogle Scholar
  65. 65.
    Wang M, Holmes B, Cheng X, Zhu W, Keidar M, Zhang LG. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. PLoS One. 2013;8(9):e73741.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ratovitski EA, Cheng X, Yan D, Sherman JH, Canady J, Trink B, Keidar M. Anti-cancer therapies of 21st century: novel approach to treat human cancers using cold atmospheric plasma. Plasma Process Polym. 2014;11(12):1128–37.CrossRefGoogle Scholar
  67. 67.
    Cheng XQ, Sherman J, Murphy W, Ratovitski E, Canady J, Keidar M. The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS One. 2014;9(5):e98652.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zhu W, Castro NJ, Cheng X, Keidar M, Zhang LG. Cold atmospheric plasma modified electrospun scaffolds with embedded microspheres for improved cartilage regeneration. PLoS One. 2015;10(7):e0134729.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials. 2008;29:2348–58.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chen Z, Cao L, Wang L, Zhu H, Jiang H. Effect of fiber structure on the properties of the electrospun hybrid membranes composed of poly(ε-caprolactone) and gelatin. J Appl Polym Sci. 2013;127:4225–32.CrossRefGoogle Scholar
  71. 71.
    Detta N, Errico C, Dinucci D, Puppi D, Clarke D, Reilly G, Chiellini F. Novel electrospun polyurethane/gelatin composite meshes for vascular grafts. J Mater Sci Mater Med. 2010;21:1761–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Ding B, Kimura E, Sato T, Fujita S, Shiratori S. Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer. 2004;45:1895–902.CrossRefGoogle Scholar
  73. 73.
    Duan B, Wu L, Yuan X, Hu Z, Li X, Zhang Y, Yao K, Wang M. Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array. J Biomed Mater Res A. 2007;83:868–78.PubMedCrossRefGoogle Scholar
  74. 74.
    Kidoaki S, Kwon IK, Matsuda T. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials. 2005;26:37–46.PubMedCrossRefGoogle Scholar
  75. 75.
    Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res B Appl Biomater. 2006;78:283–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Madhugiri S, Dalton A, Gutierrez J, Ferraris JP, Balkus KJ. Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method. J Am Chem Soc. 2003;125:14531–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliari F, Franzese O, Minieri M, Di Nardo P, Licoccia S, Traversa E. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomater. 2010;6:1227–37.PubMedCrossRefGoogle Scholar
  78. 78.
    Samavedi S, Olsen Horton C, Guelcher SA, Goldstein AS, Whittington AR. Fabrication of a model continuously graded co-electrospun mesh for regeneration of the ligament–bone interface. Acta Biomater. 2006;7:4131–8.CrossRefGoogle Scholar
  79. 79.
    Torricelli P, Gioffrè M, Fiorani A, Panzavolta S, Gualandi C, Fini M, Focarete ML, Bigi A. Co-electrospun gelatin-poly(L-lactic acid) scaffolds: modulation of mechanical properties and chondrocyte response as a function of composition. Mater Sci Eng C. 2014;36:130–8.CrossRefGoogle Scholar
  80. 80.
    Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo AM. Micro/nano encapsulation via electrified coaxial liquid jets. Science. 2002;295(5560):1695–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhao Y, Cao XY, Jiang L. Bio-mimic multichannel microtubes by a facile method. J Am Chem Soc. 2007;129(4):764–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Sun Z, Zussman E, Yarin AL. Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater. 2003;15(22):1929–32.CrossRefGoogle Scholar
  83. 83.
    Buzgo M, Jakubova R, Mickova A, Rampichova M, Prosecka E, Kochova P, Lukas D, Amler E. Time-regulated drug delivery system based on coaxially incorporated platelet alpha-granules for biomedical use. Nanomedicine. 2013;8:1137–54.PubMedCrossRefGoogle Scholar
  84. 84.
    Man Z, Yin L, Shao Z, Zhang X, Hu X, Zhu J, Dai L, Huang H, Yuan L, Zhou C, Chen H, Ao Y. The effects of co-delivery of BMSC-affinity peptide and rhTGFbeta1 from coaxial electrospun scaffolds on chondrogenic differentiation. Biomaterials. 2014;35:5250–60.PubMedCrossRefGoogle Scholar
  85. 85.
    Yamamoto M, Ikada Y, Tabata Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed. 2001;12:77–88.PubMedCrossRefGoogle Scholar
  86. 86.
    Valmikinathan CM, Defroda S, Yu X. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor. Biomacromolecules. 2009;10:1084–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Ji W, Sun Y, Yang F, van den Beucken JJ, Fan M, Chen Z, et al. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res. 2011;28:1259–72.PubMedCrossRefGoogle Scholar
  88. 88.
    Moroni L, Schotel R, Hamann D, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv Funct Mater. 2008;18:53.CrossRefGoogle Scholar
  89. 89.
    Simonet M, Schneider OD, Neuenschwander P, Stark WJ. Ultraporous 3D polymer meshes by low-temperature electrospinning: use of ice crystals as a removable void template. Polym Eng Sci. 2007;47:2020–6.CrossRefGoogle Scholar
  90. 90.
    Yokoyama Y, Hattori S, Yoshikawa C, Yasuda Y, Koyama H, Takato T, Kobayashi H. Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater Lett. 2009;63:754–6.CrossRefGoogle Scholar
  91. 91.
    Xu H, Cai S, Xu L, Yang Y. Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir. 2014;30:8461–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Guo Li
    • 1
  • Changyue Xue
    • 1
  • Sirong Shi
    • 1
  • Shu Zhang
    • 1
  • Yunfeng Lin
    • 1
    Email author
  1. 1.State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina

Personalised recommendations