Advertisement

Application of Scaffold Materials in Cartilage Tissue Engineering

  • Na Fu
  • Xu Zhang
  • Lei Sui
  • Mengting Liu
  • Yunfeng LinEmail author
Chapter
  • 841 Downloads
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

The management of chondral defects is a challenging topic of current interest for scientists and surgeons. Chondral defects caused by tumor, trauma, infection, congenital malformations are very common in clinical, which seriously affect the patient’s function and quality of life. Even several centuries after its first observation, this problem has still not found a satisfactory and definitive answer. Cartilage tissue engineering, which involves novel natural scaffolds, has emerged as a promising strategy for cartilage regeneration and repair. In this chapter, we aimed to review the application of the scaffold materials in cartilage tissue engineering, including the conditions needed to meet the ideal stent, the preparation of scaffold materials, preparation methods and so on.

Keywords

Chondral defect Cartilage tissue engineering Scaffold Scaffold materials Scaffold fabrication technology 

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (81671031, 81470721), Sichuan Science and Technology Innovation Team (2014TD0001).

References

  1. 1.
    Musumeci G, Castrogiovanni P, Leonardi R, et al. New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthod. 2014;5(2):80–8.CrossRefGoogle Scholar
  2. 2.
    Hraska V, Photiadis J, Haun C, et al. Pulmonary artery sling with tracheal stenosis. Multimed Man Cardiothorac Surg. 2009(123):mmcts.2008.003343.Google Scholar
  3. 3.
    Woo SL, Kwan MK, Lee TQ, et al. Perichondrial autograft for articular cartilage. Shear modulus of neocartilage studied in rabbits. Acta Orthop Scand. 1987;58(5):510–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Jacobs JP, Elliott MJ, Haw MP, et al. Pediatric tracheal homograft reconstruction: a novel approach to complex tracheal stenoses in children. J Thorac Cardiovasc Surg. 1996;112(6):1549–58; discussion 1559–60.Google Scholar
  5. 5.
    St John KR. The use of compliant layer prosthetic components in orthopedic joint repair and replacement: a review. J Biomed Mater Res B Appl Biomater. 2014;102(6):1332–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Tsukada H, Osada H. Experimental study of a new tracheal prosthesis: pored Dacron tube. J Thorac Cardiovasc Surg. 2004;127(3):877–84.PubMedCrossRefGoogle Scholar
  7. 7.
    Vacanti JP. Beyond transplantation. Third annual Samuel Jason Mixter lecture. Arch Surg. 1988;123(5):545–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Isogai N, Kusuhara H, Ikada Y, et al. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng. 2006;12(4):691–703.PubMedCrossRefGoogle Scholar
  9. 9.
    Lau TT, Peck Y, Huang W, et al. Optimization of chondrocyte isolation and phenotype characterization for cartilage tissue engineering. Tissue Eng Part C Methods. 2015;21(2):105–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Hwang NS, Kim MS, Sampattavanich S, et al. Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells. 2006;24(2):284–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Fecek C, Yao D, Kacorri A, et al. Chondrogenic derivatives of embryonic stem cells seeded into 3D polycaprolactone scaffolds generated cartilage tissue in vivo. Tissue Eng Part A. 2008;14(8):1403–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Wei Y, Zeng W, Wan R, et al. Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. Eur Cell Mater. 2012;23:1–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Imaizumi M, Nomoto Y, Sato Y, et al. Evaluation of the use of induced pluripotent stem cells (iPSCs) for the regeneration of tracheal cartilage. Cell Transplant. 2013;22(2):341–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Georgi N, van Blitterswijk C, Karperien M. Mesenchymal stromal/stem cell-or chondrocyte-seeded microcarriers as building blocks for cartilage tissue engineering. Tissue Eng Part A. 2014;20(17–18):2513–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Blackburn TA, Craig E. Knee anatomy: a brief review. Phys Ther. 1980;60(12):1556–60.PubMedGoogle Scholar
  16. 16.
    Girdler N. Repair of articular defects with autologous mandibular condylar cartilage. J Bone Joint Surg Br. 1993;75(5):710–4.PubMedGoogle Scholar
  17. 17.
    Shen J, Li S, Chen D. TGF-β. signaling and the development of osteoarthritis. Bone Res. 2014;2. pii:14002.Google Scholar
  18. 18.
    Lin S, Svoboda KK, Feng JQ, et al. The biological function of type I receptors of bone morphogenetic protein in bone. Bone Res. 2016;4:10065.CrossRefGoogle Scholar
  19. 19.
    Blaney Davidson E, Van der Kraan P, van Den Berg W. TGF-β and osteoarthritis. Osteoarthritis Cartilage. 2007;15(6):597–604.PubMedCrossRefGoogle Scholar
  20. 20.
    Bakker A, van de Loo F, Van Beuningen H, et al. Overexpression of active TGF-beta-1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthritis Cartilage. 2001;9(2):128–36.PubMedCrossRefGoogle Scholar
  21. 21.
    Vinatier C, Mrugala D, Jorgensen C, et al. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol. 2009;27(5):307–14.PubMedCrossRefGoogle Scholar
  22. 22.
    Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater. 2003;30(5):29–40.CrossRefGoogle Scholar
  23. 23.
    Young C, Terada S, Vacanti J, et al. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res. 2002;81(10):695–700.PubMedCrossRefGoogle Scholar
  24. 24.
    Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100(10):5807–12.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lin Y, Gallucci G, Buser D, et al. Bioengineered periodontal tissue formed on titanium dental implants. J Dent Res. 2011;90(2):251–6.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sun SJ, Yu WQ, Zhang YL, et al. Effects of TiO2 nanotube layers on RAW 264.7 macrophage behaviour and bone morphogenetic protein-2 expression. Cell Prolif. 2013;46(6):685–94.PubMedCrossRefGoogle Scholar
  27. 27.
    Kumada Y, Zhang S. Significant type I and type III collagen production from human periodontal ligament fibroblasts in 3D peptide scaffolds without extra growth factors. PLoS One. 2010;5(4):e10305.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Guo J, Chen H, Wang Y, et al. A novel porcine acellular dermal matrix scaffold used in periodontal regeneration. Int J Oral Sci. 2013;5(1):37–43.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60(2):184–98.PubMedCrossRefGoogle Scholar
  30. 30.
    Musumeci G, Loreto C, Castorina S, et al. New perspectives in the treatment of cartilage damage. Poly(ethylene glycol) diacrylate (PEGDA) scaffold. A review. Ital J Anat Embryol. 2013;118:204–10.PubMedGoogle Scholar
  31. 31.
    Musumeci G, Carnazza ML, Loreto C, et al. β-defensin-4 (HBD-4) is expressed in chondrocytes derived from normal and osteoarthritic cartilage encapsulated in PEGDA scaffold. Acta Histochem. 2012;114:805–12.PubMedCrossRefGoogle Scholar
  32. 32.
    Musumeci G, Loreto C, Carnazza ML, et al. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold. Eur J Histochem. 2011;55:e31.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Musumeci G, Loreto C, Carnazza ML, et al. OA cartilage derived chondrocytes encapsulated in poly(ethylene glycol) diacrylate (PEGDA) for the evaluation of cartilage restoration and apoptosis in an in vitro model. Histol Histopathol. 2011;26:1265–78.PubMedGoogle Scholar
  34. 34.
    Peretti GM, Randolph MA, Villa MT, et al. Cell-based tissue-engineered allogeneic implant for cartilage repair. Tissue Eng. 2000;6:567–76.PubMedCrossRefGoogle Scholar
  35. 35.
    Kisiday J, Jin M, Kurz B, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A. 2002;99:9996–10001.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kisiday JD, Jin M, DiMicco MA, et al. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J Biomech. 2004;37:595–604.PubMedCrossRefGoogle Scholar
  37. 37.
    Grande DA, Halberstadt C, Naughton G, et al. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res. 1997;34:211–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Grad S, Lee CR, Gorna K, et al. Surface motion upregulates superficial zone protein and hyaluronan production in chondrocyte-seeded threedimensional scaffolds. Tissue Eng. 2005;11:249–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Hangody L, Vásárhelyi G, Hangody LR, et al. Autologous osteochondral grafting—technique and long-term results. Injury. 2008;39(Suppl 1):S32–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Kang JY, Chung CW, Sung JH, et al. Novel porous matrix of hyaluronic acid for the three-dimensional culture of chondrocytes. Int J Pharm. 2009;369:114–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Filová E, Jelínek F, Handl M, et al. Novel composite hyaluronan/type I collagen/fibrin scaffold enhances repair of osteochondral defect in rabbit knee. J Biomed Mater Res B Appl Biomater. 2008;87:415–24.PubMedCrossRefGoogle Scholar
  42. 42.
    Masuda K, Sah RL, Hejna MJ, Thonar EJ. A novel two-step method for the formation of tissue-engineered cartilage by mature bovine chondrocytes: the alginate-recovered-chondrocyte (ARC) method. J Orthop Res. 2003;21:139–48.PubMedCrossRefGoogle Scholar
  43. 43.
    Stoddart MJ, Ettinger L, Häuselmann HJ. Enhanced matrix synthesis in de novo, scaffold free cartilage-like tissue subjected to compression and shear. Biotechnol Bioeng. 2006;95:1043–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Grad S, Eglin D, Alini M, Stoddart MJ. Physical stimulation of chondrogenic cells in vitro: a review. Clin Orthop Relat Res. 2011;469:2764–72.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Iwasa J, Engebretsen L, Shima Y, Ochi M. Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc. 2009;17(6):561–77.PubMedCrossRefGoogle Scholar
  46. 46.
    Grassi A, Zaffagnini S, Marcheggiani Muccioli GM, et al. Clinical outcomes and complications of a collagen meniscus implant: a systematic review. Int Orthop. 2014;38(9):1945–53.PubMedCrossRefGoogle Scholar
  47. 47.
    Friess W. Collagen—biomaterial for drug delivery. Eur J Pharm Biopharm. 1998;45(2):113–36.PubMedCrossRefGoogle Scholar
  48. 48.
    Steck E, Bertram H, Walther A, et al. Enhanced biochemical and biomechanical properties of scaffolds generated by flock technology for cartilage tissue engineering. Tissue Eng Part A. 2010;16(12):3697–707.PubMedCrossRefGoogle Scholar
  49. 49.
    Yuan T, Zhang L, Li K, et al. Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. J Biomed Mater Res Part B Appl Biomater. 2014;102(2):337–44.PubMedCrossRefGoogle Scholar
  50. 50.
    Scotti C, Hirschmann MT, Antinolfi P, et al. Meniscus repair and regeneration: review on current methods and research potential. Eur Cell Mater. 2013;26:150–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Martinek V, Ueblacker P, Braun K, et al. Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg. 2006;126(4):228–34.PubMedCrossRefGoogle Scholar
  52. 52.
    Malafaya PB, Silva GA, Reis RL. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59(4–5):207–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhao W, Jin X, Cong Y, et al. Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol. 2013;88:327–39.CrossRefGoogle Scholar
  54. 54.
    Lien S-M, Chien C-H, Huang T-J. A novel osteochondral scaffold of ceramic–gelatin assembly for articular cartilage repair. Mater Sci Eng C. 2009;29:315–21.CrossRefGoogle Scholar
  55. 55.
    Xing Q, Zhao F, Chen S, et al. Porous biocompatible threedimensional scaffolds of cellulose microfiber/gelatin composites for cell culture. Acta Biomater. 2010;6(6):2132–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6(7):2397–404.PubMedGoogle Scholar
  57. 57.
    Yoo HS, Lee EA, Yoon JJ, Park TG. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials. 2005;26(14):1925–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Grigolo B, De Franceschi L, Roseti L, et al. Down regulation of degenerative cartilagemolecules in chondrocytes grown on a hyaluronan-based scaffold. Biomaterials. 2005;26(28):5668–76.PubMedCrossRefGoogle Scholar
  59. 59.
    Solchaga LA, Temenoff JS, Gao J, et al. Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis Cartilage. 2005;13(4):297–309.PubMedCrossRefGoogle Scholar
  60. 60.
    Lebourg M, Rochina JR, Sousa T, et al. Different hyaluronic acid morphology modulates primary articular chondrocyte behavior in hyaluronic acid-coated polycaprolactone scaffolds. J Biomed Mater Res A. 2013;101(2):518–27.PubMedCrossRefGoogle Scholar
  61. 61.
    Angele P, Johnstone B, Kujat R, et al. Stem cell based tissue engineering for meniscus repair. J Biomed Mater Res Part A. 2008;85(2):445–55.CrossRefGoogle Scholar
  62. 62.
    Zellner J, Mueller M, Berner A, et al. Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res Part A. 2010;94(4):1150–61.Google Scholar
  63. 63.
    Zellner J, Hierl K, Mueller M, et al. Stem cell-based tissueengineering for treatment of meniscal tears in the avascular zone. J Biomed Mater Res Part B Appl Biomater. 2013;101(7):1133–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Kon E, Filardo G, Tschon M, et al. Tissue engineering for total meniscal substitution: animal study in sheep model—results at 12 months. Tissue Eng Part A. 2012;18(15–16):1573–82.PubMedCrossRefGoogle Scholar
  65. 65.
    Ahmed TAE, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev. 2008;14(2):199–215.PubMedCrossRefGoogle Scholar
  66. 66.
    Eyrich D, Brandl F, Appel B, et al. Long-term stable fibrin gels for cartilage engineering. Biomaterials. 2007;28(1):55–65.PubMedCrossRefGoogle Scholar
  67. 67.
    Bensaïd W, Triffitt JT, Blanchat C, et al. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials. 2003;24(14):2497–502.PubMedCrossRefGoogle Scholar
  68. 68.
    Meinel L, Kaplan DL. Silk constructs for delivery of musculoskeletal therapeutics. Adv Drug Deliv Rev. 2012;64(12):1111–22.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Mandal BB, Park S-H, Gil ES, Kaplan DL. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials. 2011;32(2):639–51.PubMedCrossRefGoogle Scholar
  70. 70.
    Nishimoto H, Kokubu T, Inui A, et al. Ligament regeneration using an absorbable stent-shaped poly-l-lactic acid scaffold in a rabbit model. Int Orthop. 2012;36(11):2379–86.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ikeda R, Fujioka H, Nagura I, et al. The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects. Int Orthop. 2009;33(3):821–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Garlotta D. A literature review of poly (lactic acid ). J Polym Environ. 2001;9:63–84.CrossRefGoogle Scholar
  73. 73.
    Armentano I, Bitinis N, Fortunati E, et al. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci. 2013;38:1720–47.CrossRefGoogle Scholar
  74. 74.
    Esposito AR, Moda M, Cattani SM, et al. PLDLA/PCLT scaffold for meniscus tissue engineering. Biores Open Access. 2013;2(2):138–47.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    An YH, Woolf SK, Friedman RJ. Pre-clinical in vivo evaluation of orthopaedic bioabsorbable devices. Biomaterials. 2000;21(24):2635–52.PubMedCrossRefGoogle Scholar
  76. 76.
    Cui L, Wu Y, Cen L, et al. Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials. 2009;30(14):2683–93.PubMedCrossRefGoogle Scholar
  77. 77.
    Doppalapudi S, Jain A, Khan W, Domb AJ. Biodegradable polymers-an overview. Polym Adv Technol. 2014;25:427–35.CrossRefGoogle Scholar
  78. 78.
    McCullen SD, Autefage H, Callanan A, et al. Anisotropic fibrous scaffolds for articular cartilage regeneration. Tissue Eng Part A. 2012;18(19–20):2073–83.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Anderson AJ, Dawes EA. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev. 1990;54(4):450–72.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005;26(33):6565–78.PubMedCrossRefGoogle Scholar
  81. 81.
    Deng Y, Zhao K, XF Z, et al. Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials. 2002;23(20):4049–56.PubMedCrossRefGoogle Scholar
  82. 82.
    Huang W, Shi X, et al. PHBV microspheres–PLGA matrix composite scaffold for bone tissue engineering. Biomaterials. 2010;31(15):4278–85.PubMedCrossRefGoogle Scholar
  83. 83.
    Peng Q, Zhang S, et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials. 2013;34(33):8521–30.PubMedCrossRefGoogle Scholar
  84. 84.
    Saito Y, Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int J Biol Macromol. 1994;16(2):99–104.PubMedCrossRefGoogle Scholar
  85. 85.
    Lenz RW, Marchessault RH. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules. 2005;6:1–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Saito Y, Nakamura S, Hiramitsu M. Microbial synthesis and properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Int. 1996;39:169–74.CrossRefGoogle Scholar
  87. 87.
    Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000;25:1503–55.Google Scholar
  88. 88.
    Martin DP, Williams SF. Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J. 2003;16:97–105.CrossRefGoogle Scholar
  89. 89.
    Zinn M, Witholt B, Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev. 2001;53:5–21.PubMedCrossRefGoogle Scholar
  90. 90.
    Mitomo H, Hsieh W-C, Nishiwaki K, et al. Poly (3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Comamonas acidovorans. Polymer. 2001;42:3455–61.CrossRefGoogle Scholar
  91. 91.
    Ishida K, Wang Y, Inoue Y. Comonomer unit composition and thermal properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate)s biosynthesized by Ralstonia eutropha. Biomacromolecules. 2001;2:1285–93.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhu Z, Dakwa P, Tapadia P, et al. Rheological characterization of flow and crystallization behavior of microbial synthesized poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules. 2003;36:4891–7.CrossRefGoogle Scholar
  93. 93.
    Cong C, Zhang S, Xu R, et al. The influence of 4HB content on the properties of poly (3-hydroxylbutyrate-co-4-hydroxylbutyrate) based on melt molded sheets. J Appl Polym Sci. 2008;109:1962–7.CrossRefGoogle Scholar
  94. 94.
    Li X-T, Zhang Y, Chen G-Q. Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials. Biomaterials. 2008;29:3720–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Cheng S-T, Chen Z-F, Chen G-Q. The expression of crosslinked elastin by rabbit blood vessel smooth muscle cells cultured in polyhydroxyalkanoate scaffolds. Biomaterials. 2008;29:4187–94.PubMedCrossRefGoogle Scholar
  96. 96.
    Zheng Z, Bei FF, Tian HL, Chen GQ. Effects of crystallization of polyhydroxyalkanoate blend on surface physicochemical properties and interactions with rabbit articular cartilage chondrocytes. Biomaterials. 2005;26(17):3537–48.PubMedCrossRefGoogle Scholar
  97. 97.
    Ji Y, Li XT, Chen GQ. Interactions between a poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolyester and human keratinocytes. Biomaterials. 2008;29(28):3807–14.PubMedCrossRefGoogle Scholar
  98. 98.
    Silva GA, Czeisler C, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science. 2004;303(5662):1352–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Xu XY, Li XT, Peng SW, et al. The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials. 2010;31(14):3967–75.PubMedCrossRefGoogle Scholar
  100. 100.
    Sun J, Dai Z, Zhao Y, Chen G-Q. In vitro effect of oligohydroxyalkanoates on the growth of mouse fibroblast cell line L929. Biomaterials. 2007;28:3896–903.PubMedCrossRefGoogle Scholar
  101. 101.
    Fu N, Deng S, Fu Y, et al. Electrospun P34HB fibres: a scaffold for tissue engineering. Cell Prolif. 2014;47(5):465–75. IF:3.116.Google Scholar
  102. 102.
    Fu N, Xie J, Li G, et al. P34HB film promotes cell adhesion, in vitro proliferation, and in vivo cartilage repair. RSC Adv. 2015;5:21572.Google Scholar
  103. 103.
    Li G, Fu N, et al. Poly (3-hydroxybutyrate-co-4-hydroxybutyrate) based electrospun 3D scaffolds for delivery of autogeneic chondrocytes and adipose-derived stem cells: evaluation of cartilage defects in rabbit. J Biomed Nanotechnol. 2015;11(1):1–12.CrossRefGoogle Scholar
  104. 104.
    Pham QP, Sharma U, Mikos AG, et al. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 2006;7:2796–805.Google Scholar
  105. 105.
    Tuzlakoglu K, Bolgen N, Salgado AJ, et al. Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med. 2005;16:1099–1104.Google Scholar
  106. 106.
    Coti KK, Belowich ME, Liong M, et al. Mechanised nanoparticles for drug delivery. Nanoscale. 2009;1:16–39.PubMedCrossRefGoogle Scholar
  107. 107.
    Zhou S, Deng X, Yang H. Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) block copolymers: characterization and their use as drug carriers for a controlled delivery system. Biomaterials. 2003;24:3563–70.PubMedCrossRefGoogle Scholar
  108. 108.
    Xie J, MacEwan MR, et al. Electrospun nanofibers for neural tissue engineering. Nanoscale. 2010;2:35–44.PubMedCrossRefGoogle Scholar
  109. 109.
    Bakandritsos A, Mattheolabakis G, et al. Preparation, stability and cytocompatibility of magnetic/PLA-PEG hybrids. Nanoscale. 2010;2:564–72.PubMedCrossRefGoogle Scholar
  110. 110.
    Zhang D, Tong A, et al. Osteogenic differentiation of human placenta-derived mesenchymal stem cells (PMSCs) on electrospun nanofiber meshes. Cytotechnology. 2012;64:701–10.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Whang K, Thomas C, Healy K. A novel method to fabricate bioabsorbable scaffolds. Polymer. 1995;36:837–42.CrossRefGoogle Scholar
  112. 112.
    Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials. 1999;20(19):1783–90.PubMedCrossRefGoogle Scholar
  113. 113.
    Agrawal CM, Kennedy ME, Micallef DM. The effects of ultrasound irradiation on a biodegradable 50-50% copolymer of polylactic and polyglycolic acids. J Biomed Mater Res. 1994;28(8):851–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Athanasiou K, Schmitz J, Agrawal C. The effect of porosity on in vitro degradation of polylactic acid-polyglycolic acid implants used in repair of articular cartilage. Tissue Eng. 1998;4:53–63.CrossRefGoogle Scholar
  115. 115.
    Mikos A, Thorsen A, Czerwonka L, et al. Preparation and characterization of poly (L-lactic acid) foams. Polymer. 1994;35:1068–77.CrossRefGoogle Scholar
  116. 116.
    Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res. 1998;42(3):396–402.PubMedCrossRefGoogle Scholar
  117. 117.
    Yamada N, Okano T, Sakai H, et al. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol Chemie Rapid Commun. 1990;11:571–6.CrossRefGoogle Scholar
  118. 118.
    Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res. 2005;23(2):425–32.PubMedCrossRefGoogle Scholar
  119. 119.
    Domm C, Schunke M, Christesen K, Kurz B. Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthritis Cartilage. 2002;10(1):13–22.PubMedCrossRefGoogle Scholar
  120. 120.
    Malda J, Martens DE, Tramper J, et al. Cartilage tissue engineering: controversy in the effect of oxygen. Crit Rev Biotechnol. 2003;23(3):175–94.PubMedCrossRefGoogle Scholar
  121. 121.
    Varma MM, Sravani V, Swamy PV. Design and evaluation of electrospun nanofibers for the enhancement of dissolution rate of meloxicam. J Bionanosci. 2013;7:560.CrossRefGoogle Scholar
  122. 122.
    Varma MM, Harika AL, Sravani V. Development and evaluation of lornoxicam loaded electrospun nanofibers for oral extended release. J. Bionanosci. 2013;7(4):360–70.CrossRefGoogle Scholar
  123. 123.
    Ji X, Yang W, Wang T, et al. Coaxially electrospun core/shell structured poly(L-lactide) acid/chitosan nanofibers for potential drug carrier in tissue engineering. J Biomed Nanotechnol. 2013;9(10):1672–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Ji X, Wang T, Guo L, et al. Effection of nano-ZnO on the mechanical property and biocompatibility of electrospun poly(L-lactide) acid/nano-ZnO mats. J Biomed Nanotechnol. 2013;9(3):417–23.PubMedCrossRefGoogle Scholar
  125. 125.
    Shabafrooz V, Mozafari M, Vashaee D, Tayebi L. Electrospun nanofibers: from filtration membranes to highly specialized tissue engineering scaffolds. J Nanosci Nanotechnol. 2014;14(1):522–34.PubMedCrossRefGoogle Scholar
  126. 126.
    Wang T, Ji X, Jin L, et al. Fabrication and characterization of heparin-grafted poly-L-lactic acid-chitosan core–shell nanofibers scaffold for vascular gasket. ACS Appl Mater Interfaces. 2013;5(9):3757–63.PubMedCrossRefGoogle Scholar
  127. 127.
    Yang W, Fu J, Wang D, et al. Study on CS/PCL blending vascular scaffolds by electrospinning. J Biomed Nanotechnol. 2010;6(3):254–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Gu BK, Kim MS, et al. Fabrication of conductive polymer-based nanofiber scaffolds for tissue engineering applications. J Nanosci Nanotechnol. 2014;14(10):7621–6.PubMedCrossRefGoogle Scholar
  129. 129.
    Xu J, Li S, Hu F, et al. Artificial biomimicking matrix modifications of nanofibrous scaffolds by hE-Cadherin-Fc fusion protein to promote human mesenchymal stem cells adhesion and proliferation. J Nanosci Nanotechnol. 2014;14(6):4007–13.PubMedCrossRefGoogle Scholar
  130. 130.
    Lee OJ, Ju HW, Kim J, et al. Development of artificial dermis using 3D electrospun silk fibroin nanofiber matrix. J Biomed Nanotechnol. 2014;10(7):1294–303.PubMedCrossRefGoogle Scholar
  131. 131.
    Huang R, Deng H, Cai T, et al. Layer-by-layer immobilized catalase on electrospun nanofibrous mats protects against oxidative stress induced by hydrogen peroxide. J Biomed Nanotechnol. 2014;10(7):1346–58.PubMedCrossRefGoogle Scholar
  132. 132.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Balasubramanian P, et al. Advances in electrospun nanofibers for bone and cartilage regeneration. J Nanosci Nanotechnol. 2013;13(7):4656–71.PubMedCrossRefGoogle Scholar
  133. 133.
    Formhals A. Process and apparatus Fob Pbepabing. US patents 1975504; 1934.Google Scholar
  134. 134.
    Kenawy E-R, Bowlin GL, Mansfield K, et al. Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly (lactic acid), and a blend. J Control Release. 2002;81:57–64.CrossRefGoogle Scholar
  135. 135.
    Min B-M, Jeong L, Nam YS, et al. Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes. Int J Biol Macromol. 2004;34:223–30.CrossRefGoogle Scholar
  136. 136.
    Yoshimoto H, Shin Y, Terai H, Vacanti J. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077–82.PubMedCrossRefGoogle Scholar
  137. 137.
    Li W-J, Tuli R, Okafor C, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005;26:599–609.PubMedCrossRefGoogle Scholar
  138. 138.
    Ekblom P, Vestweber D, Kemler R. Cell-matrix interactions and cell-adhesion during development. Annu Rev Cell Biol. 1986;2:27–47.PubMedCrossRefGoogle Scholar
  139. 139.
    Wei G, Jin Q, et al. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials. 2007;28(12):2087–96.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Zhang H, Jia X, et al. Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials. 2013;34(9):2202–12.PubMedCrossRefGoogle Scholar
  141. 141.
    He S, Shen L, Wu Y, et al. Effect of brain-derived neurotrophic factor on mesenchymal stem cell-seeded electrospinning biomaterial for treating ischemic diabetic ulcers via milieu-dependent differentiation mechanism. Tissue Eng Part A. 2015;21(5–6):928–38.PubMedCrossRefGoogle Scholar
  142. 142.
    Briggs T, Matos J, Collins G, Arinzeh TL. Evaluating protein incorporation and release in electrospun composite scaffolds for bone tissue engineering applications. J Biomed Mater Res A. 2015;103(10):3117–27.PubMedCrossRefGoogle Scholar
  143. 143.
    Nicknejad ET, Ghoreishi SM, Habibi N. Electrospinning of cross-linked magnetic chitosan nanofibers for protein release. AAPS PharmSciTech. 2015;16(6):1480–6.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Man Z, Yin L, Shao Z, et al. The effects of co-delivery of BMSC-affinity peptide and rhTGF-beta1 from coaxial electrospun scaffolds on chondrogenic differentiation. Biomaterials. 2014;35(19):5250–60.PubMedCrossRefGoogle Scholar
  145. 145.
    Fu W, Liu Z, Feng B, et al. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Int J Nanomedicine. 2014;9:2335–11.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Chien HW, Lai JY, Tsai WB. Galactosylated electrospun membranes for hepatocyte sandwich culture. Colloids Surf B Biointerfaces. 2014;116:576–81.PubMedCrossRefGoogle Scholar
  147. 147.
    Duan H, Feng B, et al. Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/polycaprolactone membranes. Int J Nanomedicine. 2013;8:2077–84.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Na Fu
    • 1
    • 2
  • Xu Zhang
    • 1
  • Lei Sui
    • 1
  • Mengting Liu
    • 2
  • Yunfeng Lin
    • 2
    Email author
  1. 1.School and Hospital of StomatologyTianjin Medical UniversityTianjinChina
  2. 2.State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina

Personalised recommendations