Skip to main content

Disrupting Mobility: Decarbonising Transport?

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mobility ((LNMOB))

Abstract

The transport sector urgently needs to identify decarbonisation pathways. Global demand for mobility is growing. The same applies for emissions from transport, with much of this growth taking place in emerging economies. Numerous scenario studies attempt to determine efficient strategies to decarbonise the transport sector. In this chapter we provide a comprehensive overview of scenario studies and reveal a wide spectrum of options to decarbonisation. Differences in projected GHG emissions, primary energy use and distances travelled are analysed. A typology of scenario studies is elaborated which reveals large differences in possible pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD): World energy outlook 2015, Paris (2015)

    Google Scholar 

  2. World Health Organization (WHO): Burden of disease from ambient air pollution for 2012. Genf (2014)

    Google Scholar 

  3. Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núnez, X., D’Agosto, M., Dimitriu, D., Meza, M. J. F., Fulton, L., Kobayashi, S., Lah, O., McKinnon, A., Newman, P., Ouyang, M., Schauer, J. J., Sperling, D., Tiwari, G.: Transport. In Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment of the Intergovernmental Panel on Climate Change, pp. 599–670, Cambridge University Press, New York (2014)

    Google Scholar 

  4. European Parliament: The world is changing. Transport, too, Brussels (2016)

    Google Scholar 

  5. Hinkeldein, D., Schönduwe, R., Graff, A., Hoffmann, C.: Who would use integrated sustainable mobility services—and why? In Sustainable Urban Transport, No. 7, Emerald, pp. 177–203 (2015)

    Google Scholar 

  6. Canzler, W., Knie, A.: Mobility in the age of digital modernity: why the private car is losing its significance, intermodal transport is winning and why digitalisation is the key. Appl Mobilities. 1–12 (2016)

    Google Scholar 

  7. Organisation for Economic Co-Operation and Development (OECD), International Transport Forum (ITF): ITF transport outlook 2015, Paris (2014)

    Google Scholar 

  8. International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD): World energy outlook 2002, Paris (2002)

    Google Scholar 

  9. International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD), World energy outlook 2004. Paris (2004)

    Google Scholar 

  10. World Business Council for Sustainable Development: Mobility 2030: meeting the challenges to sustainability, Geneva (2004)

    Google Scholar 

  11. ICCR, Adelphi Research, University of Cardiff, NESTEAR, ALAMO Online: Foresight for transport. A Foresight Exercise to Help Forward Thinking in Transport and Sectoral Integration, Wien (2004)

    Google Scholar 

  12. World Business Council for Sustainable Development: Pathways to energy & climate change. Geneva (2004)

    Google Scholar 

  13. Department for Transport: Visioning and Backcasting for UK Transport Policy (VIBAT). London (2006)

    Google Scholar 

  14. International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD): World energy outlook 2005. Middle East and North Africa Insights, Paris (2005)

    Google Scholar 

  15. TRAMP—Traffic and Mobility Planning GmbH, Deutsches Institut für Urbanistik (Difu), Institut für Wirtschaftsforschung Halle (IWH), Szenarien der Mobilitätsentwicklung unter Berücksichtigung von Siedlungsstrukturen bis 2050, Magdeburg (2006)

    Google Scholar 

  16. Curry, A., Hodgson, T., Kelnar, R., Wilson, A.: Intelligent infrastructure futures. The Scenarios—Towards 2055, London (2006)

    Google Scholar 

  17. International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD): World energy outlook 2006, Paris (2006)

    Google Scholar 

  18. Acatech, Mobilität 2020. Perspektiven für den Verkehr von morgen, München, Berlin (2006)

    Google Scholar 

  19. Lemmer, K.: acatech. Handlungsfeld Mobilität. Infrastrukturen sichern. Verkehrseffizienz verbessern. Exportchancen ergreifen, Braunschweig, München, Berlin (2011)

    Google Scholar 

  20. Ribeiro, S. K., Kobayashi, S., Beuthe, M., Gasca, J., Greene, D., Lee, D. S., Muromachi, Y., Newton, P. J., Plotkin, S., Sperling, D., Wit, R., Zhou, P. J., Hata, H., Sims, R., Skjolsvik, K. O.: Transport and its infrastructure. In Climate Change 2007, Mitigation of Climate Change, Cambridge, New York (2007)

    Google Scholar 

  21. World Energy Council: Transport technologies and policy scenarios to 2050. London (2007)

    Google Scholar 

  22. Uyterline, M.A., Ybema, J.R., van den Brink, R.: A sustainable energy system in 2050: promise or possibility? (2007)

    Google Scholar 

  23. European Commission: World energy technology outlook 2050: WETO H2. Brussels (2007)

    Google Scholar 

  24. Meyer, I., Leimbach, M., Jaeger, C.C.: International passenger transport and climate change: a sector analysis in car demand and associated emissions from 2000 to 2050. Energy Policy 35(12), 6332–6345 (2007)

    Article  Google Scholar 

  25. Energy Information Administration: International energy outlook 2007. Washington, DC (2007)

    Google Scholar 

  26. International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD): World energy outlook 2007. China and India Insights. Paris (2007)

    Google Scholar 

  27. European Commission (Joint Research Centre Institute for Environment and Sustainability): Backcasting Approach for Sustainable Mobility. Luxembourg (2008)

    Google Scholar 

  28. Öko-Institut, I. f. E.-u. K. Forschungszentrum Jülich, Systemforschung und Technologische Entwicklung (IEK-STE), Deutsches Institut für Wirtschaftsforschung (DIW), Fraunhofer Institut für System- und Innovationsforschung ISI, Politikszenarien für den Klimaschutz IV. Szenarien bis 2030, Dessau-Roßlau (2008)

    Google Scholar 

  29. Saxena, S., Banister, D.: Breaking the trend. Visioning and Backcasting for Transport un India & Delhi, Delhi, London (2008)

    Google Scholar 

  30. International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD), World Energy Outlook 2008, Paris (2008)

    Google Scholar 

  31. WWF Deutschland (WWF), Prognos AG, Öko-Institut e.V., Modell Deutschland. Klimaschutz bis 2050: Vom Ziel her denken, Basel, Berlin (2009)

    Google Scholar 

  32. Öko-Institut, DLR Institut für Verkehrsforschung, Institut für Energie- und Umweltforschung Heidelberg (ifeu), Deutsches Biomasseforschungszentrum gGmbH (DBFZ), Technische Universität Dresden (Professur für Verkehrsströmungslehre), Stoffstromanalyse nachhaltige Mobilität im Kontext erneuerbarer Energien bis 2030. Endbericht Teil 1: Methodik und Datenbasis, Berlin (2009)

    Google Scholar 

  33. World Energy Council: European climate change policy beyond 2012, London (2009)

    Google Scholar 

  34. McKinsey & Company: Roads Toward a Low-Carbon Future: Reducing Co2 Emissions from Passenger Vehicles in the Global Road Transportation System. New York City (2009)

    Google Scholar 

  35. Netherlands Environmental Assessment Agency (PBL): Getting into the Right Lane for 2050. Bilthoven (2009)

    Google Scholar 

  36. International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD), World Energy Outlook 2009, Paris (2009)

    Google Scholar 

  37. Prognos AG, EWI - Energiewirtschaftliches Institut an der Universität zu Köln, GWS - Gesellschaft für wirtschaftliche Strukturforschung, Energieszenarien für ein Energiekonzept der Bundesregierung, Basel, Köln, Osnabrück (2010)

    Google Scholar 

  38. Anable, J., Brand, C., Tran; M., Eyre; N.: Modelling transport energy demand: a socio-technical approach. Energy Policy. 41(0), 125–138 (2012)

    Google Scholar 

  39. Hansen, P., Matthes, F. C.: Politikszenarien für den Klimaschutz V – auf dem Weg zum Strukturwandel, Treibhausgas-Emissionsszenarien bis zum Jahr 2030, in: Schriften des Forschungszentrums Jülich. Reihe Energie und Umwelt, No. 62, Jülich (2010)

    Google Scholar 

  40. Schade, W., Krail, M.: iTREN-2030: Experiences and results for integrated technology, energy and transport policy assessment. Final Report and Deliverable 6 of iTREN-2030 (Integrated transport and energy baseline until 2030). Project co-funded by European Commission 6th RTD Programme. Fraunhofer-ISI, Karlsruhe (2007)

    Google Scholar 

  41. Schade, W., Helfrich, N., Peters, A.: A Transport Scenario for Europe Until 2050 in a 2-Degree World. In: 12th World Conference of Transport Research, 11–15.07.2010, Lissabon (2010)

    Google Scholar 

  42. International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD), World Energy Outlook 2010, Paris (2010)

    Google Scholar 

  43. Skinner, I., Hodgson, I., van Essen, H., Smokers, R., Hill, N.: Towards the decarbonisation of the EU’s transport sector by 2050. Final Report, London (2010)

    Google Scholar 

  44. Deutsches Zentrum für Luft- und Raumfahrt, I. f. T. T. D., Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES), Ingenieurbüro für neue Energien (IFNE), Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global, Stuttgart, Kassel (2012)

    Google Scholar 

  45. Zimmer, W., Hacker, F., Rausch, L., Fritsche, U., Cyganski, R., Justen, A., Knitschky, G., Lischke, A., Mehlin, M., Müller, S., Schade, W.: Weiterentwicklung des Analyseinstruments Renewbility. Renewbility II - Szenario für einen anspruchsvollen Klimaschutzbeitrag des Verkehrs, Dessau-Roßlau (2013)

    Google Scholar 

  46. Kishimoto, P.N., Paltsev, S., Karplus, V.J.: The future energy and GHG emissions impact of alternative personal transportation pathways in China. Cambridge (2012)

    Google Scholar 

  47. Girod, B., van Vuuren, D.P., Deetman, S.: Global travel within the 2 °C climate target. Energy Policy 45, 152–166 (2012)

    Article  Google Scholar 

  48. Girod, B., van Vuuren, D.P., de Vries, B.: Influence of travel behavior on global CO2 emissions. Transp. Res. Part A Policy Pract. 50, 183–197 (2013)

    Article  Google Scholar 

  49. Zmud, J., Ecola, L., Phleps, P., Feige, I.: The future of mobility. Scenarios for the United States in 2030, Santa Monica (2014)

    Google Scholar 

  50. Organisation for Economic Co-Operation and Development (OECD), International Transport Forum (ITF): ITF transport outlook 2013. Funding Transport, Paris (2014)

    Google Scholar 

  51. Ahrens, G.-A., Becker, U., Böhmer, T., Richter, F., Wittwer, R.: Potenziale des Radverkehrs für den Klimaschutz. Dresden, Dessau-Roßlau (2013)

    Google Scholar 

  52. Blanck, R., Kasten, P., Hacker, F., Mottschall, M.: Treibhausgasneutraler Verkehr 2050: Ein Szenario zur zunehmenden Elektrifizierung und dem Einsatz stromerzeugter Kraftstoffe im Verkehr. Abschlussbericht im Auftrag des Umweltbundesamtes zum Forschungsvorhaben “Verkehr 2050 - Entwicklung von Paramtern und Skizzierung eines vereinfachten Energie- und Emissionsszenarios”, Berlin (2013)

    Google Scholar 

  53. Öko-Institut, I. f. E.-u. K. Forschungszentrum Jülich, Systemforschung und Technologische Entwicklung (IEK-STE),, Deutsches Institut für Wirtschaftsforschung (DIW), Fraunhofer Institut für System- und Innovationsforschung ISI, Politikszenarien für den Klimaschutz VI. Treibhausgas-Emissionsszenarien bis zum Jahr 2030, Freiburg, Dessau-Roßlau (2013)

    Google Scholar 

  54. Cambridge Econometrics, Ricard-AEA: An Economic Assessment of Low Carbon Vehicles. Cambridge, London (2013)

    Google Scholar 

  55. Hacker, F., Blanck, R., Hülsmann, F., Kasten, P., Loreck, C., Ludig, S., Mottschall, M., Zimmer, W.: eMobil 2050. Szenarien zum möglichen Beitrag des elektrischen Verkehrs zum langfristigen Klimaschutz. Gemeinsamer Endbericht zu den Vorhaben “Wissenschaftliche Unterstützung bei der Erarbeitung von Szenarien zum möglichen Beitrag der Elektromobilität zum langfristigen Klimaschutz” (FKZ: UM 11 96 106) und “Szenarien zum möglichen Beitrag der Elektromobilität im Güter- und öffentlichen Personenverkehr zum langfristigen Klimaschutz” (FKZ: 16 EM 1001), Berlin (2014)

    Google Scholar 

  56. Townsend, A.: Re-Programming-Mobility. The Digital Transformation of Transportation in the United States, New York (2014)

    Google Scholar 

  57. Shell Deutschland Oil, Prognos. Shell Pkw-Szenarien bis 2040, Fakten, Trends und Perspektiven für Auto-Mobilität, Hamburg (2014)

    Google Scholar 

  58. International Energy Agency (IEA), Organisation for Economic Co-Operation and Development (OECD): World energy outlook 2014. Paris (2014)

    Google Scholar 

  59. De Koning, A., Huppes, G., Deetman, S.: Scenarios for 2050 for a 2-Degrees World: Using a Four Regions Trade Linked Io-Model With High Sector Detail. CECILIA2050 WP3 Deliverable 3.2, Institute of Environmental Sciences (CML), Leiden University, Leiden (2014)

    Google Scholar 

  60. U.S. Department of Transportation: Beyond traffic 2045. Trends and Choices, Washington D.C. (2015)

    Google Scholar 

  61. Öko-Institut, INFRAS Forschung und Beratung, Nutzen statt besitzen: Neue Ansätze für eine collaborative economy, Dessau (2015)

    Google Scholar 

  62. Organisation for Economic Co-Operation and Development (OECD), International Transport Forum (ITF): Urban mobility system upgrade. How Shared Self-Driving Cars Could Change City Traffic, Paris (2015)

    Google Scholar 

  63. Stölzle, W., Weidmann, U., Klaas-Wissing, T., Kupferschmid, J., Riegel, B.: Vision Mobilität Schweiz 2050. Zürich, St. Gallen (2015)

    Google Scholar 

  64. IHS Wien, Umweltbundesamt, TU Wien, DIW Berlin, Öko-Institut, CASE, DEFINE - Development of an evaluation framework for the introduction of electromobility. Synthesebericht, Wien, Dessau, Berlin (2015)

    Google Scholar 

  65. Creutzig, F.: Evolving narratives of low-carbon futures in transportation. Transp. Rev. 36(3), 341–360 (2016)

    Article  Google Scholar 

  66. Capros, P., Paroussos, L., Fragkos, P., Tsani, S., Boitier, B., Wagner, F., Busch, S., Resch, G., Blesl, M., Bollen, J.: European decarbonisation pathways under alternative technological and policy choices: a multi-model analysis. Energy Strategy Rev. 2(3–4), 231–245 (2014)

    Article  Google Scholar 

  67. Pindyck, R.S.: The Use and Misuse of Models for Climate Policy. National Bureau of Economic Research Working Paper Series, No. 21097 (2015)

    Google Scholar 

  68. Avineri, E.: On the use and potential of behavioural economics from the perspective of transport and climate change. J. Transp. Geogr. 24, 512–521 (2012)

    Article  Google Scholar 

  69. Marsden, G., Docherty, I.: Insights on disruptions as opportunities for transport policy change. Transp. Res. Part A Policy Pract. 51, 46–55 (2013)

    Article  Google Scholar 

  70. Canzler, W., Knie, A.: Brave new mobility world? no energy transition without transport transition, Berlin (2016)

    Google Scholar 

  71. Kenworthy, J., Newman, P.: The End of Automobile Dependence. How cities are moving beyond car-based planning. Island Press, Washington, Covelo, London (2015)

    Google Scholar 

  72. Steiner, J., Wappelhorst, S., Graff, A.: Free-Floating E-Carsharing: Integration in Public Transport Without Range Problems. Presented at European Transport Conference, Frankfurt/Main (2014)

    Google Scholar 

  73. Mitchell, W.J., Borroni-Bird, C.E., Burns, L.D.: Reinventing the Automobile: Personal Urban Mobility for the 21st Century. Cambridge (2010)

    Google Scholar 

Download references

Acknowledgments

Several informal reviewers and collaborators commented on a number of previous drafts of this paper. The authors would like to thank Axel Volkery, Cathy Marcherais, Lukas Neckermann and Veronique van Acker for their helpful comments and suggestions.

The authors gratefully acknowledge the support of Stiftung Mercator for the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lennert .

Editor information

Editors and Affiliations

Appendix

Appendix

See Tables 2, 3, 4 and 5.

Table 2 BAU scenarios used in Fig. 3
Table 3 Policy scenarios used in Fig. 4
Table 4 GHG emissions—BAU scenarios (# corresponds to number in Table 2)
Table 5 GHG emissions—policy scenarios (# corresponds to number in Table 3)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lennert, F., Schönduwe, R. (2017). Disrupting Mobility: Decarbonising Transport?. In: Meyer, G., Shaheen, S. (eds) Disrupting Mobility. Lecture Notes in Mobility. Springer, Cham. https://doi.org/10.1007/978-3-319-51602-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51602-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51601-1

  • Online ISBN: 978-3-319-51602-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics