Skip to main content

Several Geometries for Movements Generations

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 117))

Abstract

In previous works we reanalyzed the kinematics of hand movements and locomotion, and suggested that several geometries are used conjointly by the brain for according the shape and the duration along trajectories; this was done in collaboration with Tamar Flash and her collaborators [10, 64, 67], and with Quang-Cuong Pham [79]. The variety of geometries which were implied in this process, were associated to sub-groups of the affine group of a plane: full affine, equi-affine and Euclidean. Other studies have shown how the above geometries constrain the production of the movements [92], or began to use the affine geometry in Robotics [80]. In this article, we propose to use a new variety of geometries which extends the preceding series in another direction, to cover wider contexts and more complex movements, like prehension, initiation of walking, locomotion, navigation, imagined motion. The new spaces adapted to those geometries have no points; they come from topos theory, which is an extension of set theory replacing sets by fields and graphs of dynamics. Any given topos generates a variety of different geometries, which can be mixed as in the preceding studies. Such geometries take into account efforts, forces and dynamics; they do not neglect them aside as does traditional geometry. In this preliminary report we indicate the simplest characteristics of spaces which underly the above examples. The hypothesis is also that these spaces are implemented in different, although overlapping, central nervous system networks in the brain, corresponding to the different action spaces mentioned above. Here, as for the known classical geometries, the most concrete suggestion concerns the timing of movement: we predict that different components of the controlled system are using different intrinsic time courses, and that the mapping between these different internal durations is an important part of the dynamic under geometrical control. This reminds us of a well known psychological observation, for instance that time in imagination does not flow as ordinary clocks time, but this also suggests that reaching an object with the hand has its own time, or that equilibrium control in walking works within a specific time, which is different from the walking trajectory displacement time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Recently, Q.-C. Pham and Y. Nakamura developed a new trajectory deformation algorithm based on affine transformations. Reference [80]. The idea is to apply a set of predefined affine transformations to a set of trajectory segments, to avoid unexpected obstacles or to achieve a new objective goal. They also conjugate this idea with optimization algorithms for better accuracy, respecting \(C^{1}\) continuity, keeping fixed final configuration and avoiding joint limits. The method was tested on a virtual planar three-links manipulator, and compared to polynomial interpolations; the main result is a considerable gain in computation time for equal accuracy. This can also be efficiently applied for minimizing curvature’s changes in 3D point to point deformation. The method was applied to rapid motion transfer from humans to robots, with better performance in kinematics than polynomial interpolation methods.

References

  1. P. Andersen, R. Morris, D. Amaral, T. Bliss, J. O’Keefe, The Hippocampus Book (Oxford University Press, Oxford, 2006)

    Book  Google Scholar 

  2. R.A. Andersen, Visual and eye movement function of the posterior parietal cortex. Annu. Rev. Neurosci. 12, 377–403 (1989)

    Article  Google Scholar 

  3. D.E. Angelaki, A.G. Shaikh, A.M. Green, Neurons compute internal models of the physical laws of motion. Nature 430(6999), 560–564 (2004)

    Article  Google Scholar 

  4. G. Arechavaleta, J.-P. Laumond, H. Hicheur, D. Le Bihan, A. Berthoz, The nonholonomic nature of human locomotion: a modeling study, in Biomedical Robotics and Biomechatronics (2006), pp. 158–163

    Google Scholar 

  5. A.E. Arnold, G. Iaria, A.D. Ekstrom, Mental simulation of routes during navigation involves adaptive temporal compression. Cognition 25(157), 14–23 (2016)

    Article  Google Scholar 

  6. J. Barra, L. Laou, J.-B. Poline, D. Le Bihan, A. Berthoz, Does an oblique/slanted perspective during virtual navigation engage both egocentric and allocentric brain strategies? PLoS One 7(11), e49537 (2012)

    Article  Google Scholar 

  7. P. Baudot, D. Bennequin, The homological nature of entropy. Entropy 17(5), 3253–3318 (2015)

    Article  MathSciNet  Google Scholar 

  8. D. Bennequin, Remarks on invariance in the primary visual systems of mammals, in Neuromathematics of Vision, ed. by G. Citti, A. Sarti (Springer, Berlin, 2014), pp. 243–333

    Chapter  Google Scholar 

  9. D. Bennequin, A. Berthoz, Non-linear Galilean vestibular receptive fields. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2273–2276 (2011)

    Google Scholar 

  10. D. Bennequin, R. Fuchs, A. Berthoz, T. Flash, Movement timing and invariance arise from several geometries. PLoS Comput. Biol. 5(7), e1000426 (2009)

    Article  MathSciNet  Google Scholar 

  11. N.A. Bernstein, The Co-ordination and Regulation of Movements (Pergamon Press, New York, 1967)

    Google Scholar 

  12. A. Berthoz, Reference frames for the perception and control of movement, in Brain and Space, ed. by J. Paillard (Oxford University Press, Oxford, 1991), pp. 81–111

    Google Scholar 

  13. A. Berthoz, Parietal and hippocampal contribution to topokinetic and topographic memory. Philos. Trans. R. Soc. 352, 1437–1448 (1997)

    Article  Google Scholar 

  14. A. Berthoz, Le sens du mouvement (Odile Jacob, 1997)

    Google Scholar 

  15. A. Berthoz, La décision (Odile Jacob, 2003)

    Google Scholar 

  16. A. Berthoz, Simplexity. How to Deal with a Complex World (Yale University Press, New Haven, 2011)

    Google Scholar 

  17. A. Berthoz, La vicariance (Odile Jacob, 2013). transl. Vicariousness (Harvard University Press, 2016)

    Google Scholar 

  18. A. Berthoz, W. Graf, P.P. Vidal, The Head-Neck Sensory Motor System (Oxford University Press, Oxford, 1992)

    Book  Google Scholar 

  19. A. Binet, J. Courtier, Sur la vitesse des mouvements graphiques. Rev. Philos. 25, 664–671 (1893)

    Google Scholar 

  20. M. Bompard-Porte, D. Bennequin, Pulsions et politique. Suivi de Le non-être homologique (Editions L’Harmattan, Paris, 1998)

    Google Scholar 

  21. N.E. Burgess, K.J. Jeffery, J.E. O’Keefe, The Hippocampal and Parietal Foudations of Spatial Cognition (Oxford University Press, Oxford, 1999)

    Google Scholar 

  22. E. Burguiere, A. Arleo, M. reza Hojjati, Y. Elgersma, C.I. De Zeeuw, A. Berthoz, L. Rondi-Reig, Spatial navigation impairment in mice lacking cerebellar LTD: a motor adaptation deficit? Nat. Neurosci. 8(10), 1292–1294 (2005)

    Article  Google Scholar 

  23. E. Cartan, La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile (Gauthier-Villars, 1937)

    Google Scholar 

  24. G. Committeri, G. Galati, A.-L. Paradis, L. Pizzamiglio, A. Berthoz, D. Le Bihan, Reference frames for spatial cognition: different brain areas are involved in viewer-, object- and landmark-centered judgments about object location. J. Cogn. Neurosci. 16(9), 1517–1535 (2004)

    Article  Google Scholar 

  25. J. Decety, Do imagined and executed actions share the same neural substrate? Brain Res. Cogn. Brain Res. 3(2), 87–93 (1996)

    Article  Google Scholar 

  26. J. Decety, M. Jeannerod, C. Prablanc, The timing of mentally represented actions. Behav. Brain Res. 34(1–2), 35–42 (1989)

    Article  Google Scholar 

  27. M. Dimiccoli, B. Girard, A. Berthoz, D. Bennequin, Striola magica. A functional explanation of otolith geometry. J. Comput. Neurosci. 35(2), 125–154 (2013)

    Article  MathSciNet  Google Scholar 

  28. J. Droulez, D. Bennequin, Perception des symétries et invariances perceptives, in Symétries, symétries et asymétries du vivant, ed. by M. Siksou (Lavoisier, 2005), pp. 155–171

    Google Scholar 

  29. G.M. Edelman, The Remembered Present: A Biological Theory of Consciousness (Basic Books, New York, 1989)

    Google Scholar 

  30. T. Flash, The control of hand equilibriul trajectories in multi-joint arm movements. Biol. Cybern. 57, 257–274 (1987)

    Article  MATH  Google Scholar 

  31. T. Flash, A. Handzel, Affine differential geometry of human arm trajectories. Abstr. Soc. Neurosci. 22, 1635 (1996)

    MATH  Google Scholar 

  32. T. Flash, A. Handzel, Affine differential geometry analysis of human arm movements. Biol. Cybern. 96(6), 577–601 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Flash, N. Hogan, The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)

    Google Scholar 

  34. T. Flash, Y. Meirovitch, A. Barliya, Models of human movement: trajectory planning and inverse kinematics studies. Robot. Auton. Syst. 61(4), 330–339 (2013)

    Article  Google Scholar 

  35. O. Faugeras, Cartan’s moving frame method and its application to the geometry and evolution of curves in the Euclidean, affine and projective planes. Preprint Inria (1994)

    Google Scholar 

  36. K. Friston, The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010)

    Article  Google Scholar 

  37. G. Galati, G. Pelle, A. Berthoz, G. Committeri, Multiple reference frames used by the human brain for spatial perception and memory. Exp. Brain Res. 206(2), 109–120 (2010)

    Article  Google Scholar 

  38. É. Galois, Œuvres mathématiques (Gauthier-Villars et fils, 1897)

    Google Scholar 

  39. J.J. Gibson, E.J. Gibson, Continuous perspective transformations and the perception of rigid motion. J. Exp. Psychol. 54(2), 129–138 (1957)

    Article  Google Scholar 

  40. J.M. Goldberg, V.J. Wilson, K.E. Cullen, The Vestibular System: A Sixth Sense (Oxford University Press, Oxford, 2012)

    Book  Google Scholar 

  41. W. Graf, F. Klam, The vestibular system: functional and comparative anatomy, evolution and development. Comptes Rendus Palevol 5(3–4), 637–655 (2006)

    Article  Google Scholar 

  42. A. Grothendieck, J.-L. Verdier, Théorie des topos (sga 4, exposés i-vi), Springer Lecture Notes in Mathematics, pp. 269–270

    Google Scholar 

  43. O.J. Grüsser, T. Landis (eds.), Visual Agnosias and Other Disturbances of Visual Perception and Cognition (Macmillan, London, 1991)

    Google Scholar 

  44. N.K. Harpaz, T. Flash, I. Dinstein, Scale-invariant movement encoding in the human motor system. Neuron 81, 452–462 (2014)

    Article  Google Scholar 

  45. C.M. Harris, D.M. Wolpert, Signal-dependent noise determines motor planning. Nature 394(6695), 780–784 (1998)

    Article  Google Scholar 

  46. B. Heider, A. Karnik, N. Ramalingam, R.M. Siegel, Neural representation during visually guided reaching in macaque posterior parietal cotex. J. Neurophysiol. 104, 3494–3509 (2010)

    Article  Google Scholar 

  47. H. Hicheur, S. Vieilledent, M.J. Richardson, T. Flash, A. Berthoz, Velocity and curvature in human locomotion along complex curved paths: a comparison with hand movements. Exp. Brain Res. 162(2), 145–154 (2005)

    Article  Google Scholar 

  48. H. Hicheur, Q.-C. Pham, G. Arechavaleta, J.-P. Laumond, A. Berthoz, The formation of trajectories during goal-oriented locomotion in humans. I. A stereotyped behaviour. Eur. J. Neurosci. 26(8), 2376–2390 (2007)

    Article  Google Scholar 

  49. N. Hogan, An organizing principle for a class of voluntary movements. J. Neurosci. 4(11), 2745–2754 (1984)

    Google Scholar 

  50. K. Igloi, C.F. Doeller, A. Berthoz, L. Rondi-Reig, N. Burgess, Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proc. Natl. Acad. Sci. USA 107(32), 14466–14471 (2010)

    Article  Google Scholar 

  51. A. Imhausen, Mathematics in Ancient Egypt. A Contextual History (Princeton University Press, Princeton, 2016)

    MATH  Google Scholar 

  52. M.M. Jankowski, J. Passecker, M.N. Islam, S. Vann, J.T. Erichsen, J.P. Aggleton, S.M. O’Mara, Evidence for spatially-responsive neurons in the rostral thalamus. Front. Behav. Neurosci. 9, 256 (2015)

    Google Scholar 

  53. F. Klein, Vergleichende Btrachtungen über neurer geometrische Forschungen. Reedition H. Wussing, Das Erlanger Programm, 1974 (Deichert, 1872)

    Google Scholar 

  54. J.J. Koenderink, A.J. van Doorn, Facts on optic flow. Biol. Cybern. 56(4), 247–254 (1987)

    Article  MATH  Google Scholar 

  55. J.J. Koenderink, A.J. van Doorn, Pictorial Space (MIT Press, Cambridge, 2003)

    MATH  Google Scholar 

  56. F. Lacquaniti, C. Terzuelo, P. Viviani, The law relating the kinematic and figural aspects of drawing movements. Acta Psychol. 54(1), 115–130 (1983)

    Article  Google Scholar 

  57. F. Lacquaniti, G. Bosco, S. Gravano, I. Indovina, B. La Scaleia, V. Maffei, M. Zago, Gravity in the brain as a reference for space and time perception. Multisens. Res. 28(5–6), 397–426 (2015)

    Article  Google Scholar 

  58. S. Lambrey, C. Doeller, A. Berthoz, N. Burgess, Imagining being somewhere else: neural basis of changing perspective in space. Cereb. Cortex 22, 166–174 (2011)

    Article  Google Scholar 

  59. S.B. Laughlin, The role of sensory adaptation in the retina. J. Exp. Biol. 146(1), 39–62 (1989)

    Google Scholar 

  60. N. Levit-Binnun, E. Schechtman, T. Flash, On the similarities between the perception and production of elliptical trajectories. Exp. Brain Res. 172, 533–555 (2006)

    Article  Google Scholar 

  61. R.R. Llinás, I of the Vortex: From Neurons to Self (MIT Press, Cambridge, 2002)

    Google Scholar 

  62. S.M. Lane, Categories for the Working Mathematician, vol. 5 (Springer, New York, 1998)

    MATH  Google Scholar 

  63. S.M. Lane, Homology (Springer, New York, 2012)

    MATH  Google Scholar 

  64. U. Maoz, A. Berthoz, T. Flash, Complex unconstrained three-dimensional hand movement and constant equi-affine speed. J. Neurophysiol. 101(2), 1002–1015 (2009)

    Article  Google Scholar 

  65. P. Marianelli, A. Bethoz, D. Bennequin, Crista egregia: a geometrical model of the crista ampullaris, a sensory surface that detects head rotations. Biol. Cybern. 109(1), 5–32 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. J. Mc Intyre, M. Zago, A. Berthoz, F. Lacquaniti, Does the brain model Newton’s laws? Nat. Neurosci. 4, 693–694 (2001)

    Google Scholar 

  67. Y. Meirovitch, D. Bennequin, T. Flash, Geometrical invariance and smoothness maximization for task-space movement generation. Preprint (2016)

    Google Scholar 

  68. D. Mumford, On the computational architecture of the neocortex. Biol. Cybern. 65(2), 135–145 (1991)

    Article  Google Scholar 

  69. D. Mumford, On the computational architecture of the neocortex. Biol. Cybern. 65(3), 241–251 (1992)

    Article  Google Scholar 

  70. J. Munzert, Temporal accuracy of mentally simulated transport movements. Percept. Mot. Skills 94(1), 307–318 (2002)

    Article  Google Scholar 

  71. F. Nemmi, M. Boccia, L. Piccardi, G. Galati, C. Guariglia, Segregation of neural circuits involved in spatial learning in reaching and navigational space. Neuropsychologia 51(8), 1561–1570 (2013)

    Article  Google Scholar 

  72. P.J. Olver, A survey of moving frames, Computer Algebra and Geometric Algebra with Applications (Springer, Berlin, 2005), pp. 105–138

    Google Scholar 

  73. J. Paillard (ed.), Brain and Space (Oxford University Press, New York, 1991)

    Google Scholar 

  74. A. Pellionisz, R. Llinás, Tensorial approach to the geometry of brain function: cerebellar coordination via a metric tensor. Neuroscience 5(7), 1125–1136 (1980)

    Article  Google Scholar 

  75. A. Pellionisz, R. Llinás, Tensor network theory of the metaorganization of functional geometries in the central nervous system. Neuroscience 16(2), 245–273 (1985)

    Article  Google Scholar 

  76. W. Penfield, E. Boldrey, Somatic, motor and sensory represntation in the cerebral cortex of man as studied by electirc stimulation. Bran 60, 389–443 (1937)

    Google Scholar 

  77. B. Peterson, Current approaches and future directions to understanding control of head movement. Prog. Brain Res. 143, 369–381 (2004)

    Google Scholar 

  78. B. Peterson, J. Baker, E. Keshner, Multidimensional analysis of head stabilization-progress and prospects, The Head-Neck Sensory Motor System (Oxford University Press, Oxford, 2012)

    Google Scholar 

  79. Q.-C. Pham, D. Bennequin, Affine invariance of human hand movements: a direct test (2012). arXiv:1209.1467

  80. Q.-C. Pham, Y. Nakamura, A new trajectory deformation algorithm based on affine transformations. IEEE Trans. Robot. 31(4), 1054–1063 (2015)

    Article  Google Scholar 

  81. Q.-C. Pham, H. Hicheur, G. Arechavaleta, J.-P. Laumond, A. Berthoz, The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model. Eur. J. Neurosci. 26(8), 2391–2403 (2007)

    Google Scholar 

  82. D. Philipona, K. O’Regan, J.-P. Nadal, Is there something out there? Inferring space from sensorimotor dependencies. Neural Comput. 15(9), 2029–2049 (2003)

    Article  MATH  Google Scholar 

  83. J. Piaget, B. Inhelder, La représentation de l’espace chez l’enfant (Presses Universitaires de France, 1948)

    Google Scholar 

  84. J. Piaget, B. Inhelder, A. Szeminska, La géométrie spontanée de l’enfant (Presses Universitaires de France, 1948)

    Google Scholar 

  85. L. Piccardi, F. Bianchini, R. Nori, A. Marano, F. Iachini, L. Lasala, C. Guariglia, Spatial location and pathway memory compared in the reaching vs. walking domains. Neurosci. Lett. 30(566), 226-230 (2014)

    Google Scholar 

  86. H. Poincaré, La Science et l’hypothèse (Flammarion, 1902)

    Google Scholar 

  87. H. Poincaré, La Valeur de la science. Bibliothèque de philosophie scientifique (Flammarion, 1905)

    Google Scholar 

  88. H. Poincaré, Science et méthode. Bibliothèque de philosophie scientifique (Flammarion, 1908)

    Google Scholar 

  89. H. Poincaré, Dernières Pensées. Bibliothèque de philosophie scientifique (Flammarion, 1913)

    Google Scholar 

  90. F.E. Pollick, G. Sapiro, Constant affine velocity predicts the \(1/3\) power law of planar motion perception and generation. Vis. Res. 37(3), 347–353 (1997)

    Article  Google Scholar 

  91. F. Polyakov, R. Drori, Y. Ben-Shaull, M. Abeles, T. Flash, A compact representation of drawing movements with sequences of parabolic primitives. PLoS Comput. Biol. 5(7), e1000427 (2009)

    Article  MathSciNet  Google Scholar 

  92. F. Polyakov, E. Stark, R. Drori, M. Abeles, T. Flash, Parabolic movement primitives and cortical states: merging optimality with geometric invariance. Biol. Cybern. 100(2), 159–184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  93. A. Prouté, Introduction à la logique catégorique. Cours à Paris 7. Preprint (2016)

    Google Scholar 

  94. R. Rashed, The Development of Arabic Mathematics: Between Arithmetic and Algebra, vol. 156 (Springer Science and Business Media, Berlin, 2013)

    Google Scholar 

  95. E. Robson, Mathematics in Ancient Iraq: A Social History (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  96. R.W. Sharpe, Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program (Springer, New York, 1997)

    MATH  Google Scholar 

  97. R.E. Shaw, M. McIntyre, W.M. Mace, The role of symmetry in event perception, Perception: Essays in Honor of James J. Gibson (Cornell University Press, Ithaca, 1974)

    Google Scholar 

  98. S.M. Sherman, R.W. Guillery, Exploring the Thalamus and Its Role in Cortical Function, 2nd edn. (MIT Press, Cambridge, 2006)

    Google Scholar 

  99. J.J.E. Slotine, Modular stability tools for distributed computation and control. Int. J. Adapt. Control Signal Process. 17(6), 397–416 (2002)

    Article  MATH  Google Scholar 

  100. J.J. Slotine, W. Lohmiller, Modularity, evolution, and the binding problem: a view from stability theory. Neural Netw. 14(2), 137–145 (2001)

    Article  Google Scholar 

  101. R. Thom, Stabilité structurelle et morphogenèse: essai d’une théorie générale des modèles. Interédition (1977)

    Google Scholar 

  102. R. Thom, Esquisse d’une sémiophysique. physique aristotéliciene et théorie des catastrophes (1988)

    Google Scholar 

  103. S. Vieilledent, Y. Kerlirzin, S. Dalbera, A. Berthoz, Relationship between velocity and curvature of a human locomotor tralectory. Neurosci. Lett. 305(1), 65–69 (2001)

    Article  Google Scholar 

  104. H. von Helmholtz, The origin and meaning of geometrical axioms. Mind 3, 301–321 (1876)

    Article  Google Scholar 

  105. P.H. Weiss, J.C. Marshall, G. Wunderlich, L. Tellmann, P.W. Halligan, H.-J. Freund, K. Zilles, G.R. Fink, Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. Brain 123(12), 2531–2541 (2000)

    Article  Google Scholar 

  106. F. Wolf, T. Geisel, Universality in visual cortical pattern formation. J. Physiol.-Paris 97(2), 253–264 (2003)

    Article  Google Scholar 

  107. T.A. Yakusheva, A.G. Shaikh, A.M. Green, P.M. Blazquez, J.D. Dickman, D.E. Angelaki, Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54(6), 973–985 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bennequin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bennequin, D., Berthoz, A. (2017). Several Geometries for Movements Generations. In: Laumond, JP., Mansard, N., Lasserre, JB. (eds) Geometric and Numerical Foundations of Movements . Springer Tracts in Advanced Robotics, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-51547-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51547-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51546-5

  • Online ISBN: 978-3-319-51547-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics