Skip to main content

Integrated Casting-Extrusion (ICE) of an AA6082 Aluminium Alloy

  • Conference paper
  • First Online:
Light Metals 2017

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

An integrated casting-extrusion is proposed as a novel method for producing profiles of light alloys at low cost and high efficiency. Such a process has multiple advantages, including use of solidification heat, removing the multiple steps in conventional processes and eliminating casting defects. Integrated cast-extrusion experiments have been carried out using an AA6082 aluminium alloy, under usual casting conditions and 360 °C extrusion temperature. Experimental results revealed that deformation structure dominated in the as-cast-extruded state with a uniform microstructure and that, upon heat treatment, a uniform distribution of Mg2Si precipitations was obtained. EBSD measurements showed that, after T6-5h heat-treatment, a fine grain structure with an average grain size of 75 µm and well developed high angle grain boundaries was successfully achieved. The hardness of the alloy reached to 116 HV after 5 h aging at 180 °C, which is comparable to that reported for the same alloy processed by conventional routines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. G. Mrówka-Nowotnik, J. Sieniawski, A. Nowotnik, Effect of heat treatment on tensile and fracture toughness properties of 6082 alloy. J. Achiev. Mater. Manuf. Eng. 32, 162–170 (2009)

    Google Scholar 

  2. F. Czerwinski, A. Zielinska-Lipiec, The microstructure evolution during semisolid molding of a creep-resistant Mg–5Al–2Sr alloy. Acta Mater. 53, 3433–3444 (2005)

    Article  Google Scholar 

  3. M. Ghomashchi, A. Vikhrov, Squeeze casting: an overview. J. Mater. Process. Technol. 101, 1–9 (2000)

    Article  Google Scholar 

  4. S. Ji, Z. Fan, M. Bevis, Semi-solid processing of engineering alloys by a twin-screw rheomoulding process. Mater. Sci. Eng. A 299, 210–217 (2001)

    Article  Google Scholar 

  5. H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, J. Sokolowski, The effect of average cooling rates on the microstructure of the Al-20% Si high pressure die casting alloy used for monolithic cylinder blocks. J. Mater. Process. Technol. 203, 333–341 (2008)

    Article  Google Scholar 

  6. H. Sevik, S.C. Kurnaz, Properties of alumina particulate reinforced aluminum alloy produced by pressure die casting. Mater. Des. 27, 676–683 (2006)

    Article  Google Scholar 

  7. G. Mrówka-Nowotnik, J. Sieniawski, Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys. J. Mater. Process. Technol. 162, 367–372 (2005)

    Article  Google Scholar 

  8. K.O. Pedersen, I. Westermann, T. Furu, T. Børvik, O.S. Hopperstad, Influence of microstructure on work-hardening and ductile fracture of aluminium alloys. Mater. Des. 70, 31–44 (2015)

    Article  Google Scholar 

  9. Z. Zhang, D. Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scripta Mater. 54, 1321–1326 (2006)

    Article  Google Scholar 

  10. H. McQueen, J. Jonas, Recovery and recrystallization during high temperature deformation. Treat. Mater. Sci. Technol. 6, 393–493 (1975)

    Article  Google Scholar 

  11. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater Sci. 60, 130–207 (2014)

    Article  Google Scholar 

  12. H. Miura, T. Sakai, A. Belyakov, G. Gottstein, M. Crumbach, J. Verhasselt, Static recrystallization of SiO2-particle containing {011} <100> copper single crystals. Acta Mater. 51, 1507–1515 (2003)

    Article  Google Scholar 

  13. R. Doherty, D. Hughes, F. Humphreys, J. Jonas, D.J. Jensen, M. Kassner, W. King, T. McNelley, H. McQueen, A. Rollett, Current issues in recrystallization: a review. Mater. Sci. Eng. A 238, 219–274 (1997)

    Article  Google Scholar 

  14. A. Gupta, D. Lloyd, S. Court, Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater. Sci. Eng. A 316, 11–17 (2001)

    Article  Google Scholar 

  15. G. Edwards, K. Stiller, G. Dunlop, M. Couper, The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 46, 3893–3904 (1998)

    Article  Google Scholar 

  16. C. Marioara, S. Andersen, J. Jansen, H. Zandbergen, Atomic model for GP-zones in a 6082 Al–Mg–Si system. Acta Mater. 49, 321–328 (2001)

    Article  Google Scholar 

  17. W. Miao, D. Laughlin, Precipitation hardening in aluminum alloy 6022. Scripta Mater. 40, 873–878 (1999)

    Article  Google Scholar 

  18. R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, B. Niroumand, Significant improvement of semi-solid microstructure and mechanical properties of A356 alloy by ARB process. Mater. Sci. Eng. A 528, 2495–2501 (2011)

    Article  Google Scholar 

  19. S. Amirkhanlou, M. Ketabchi, N. Parvin, A. Orozco-Caballero, F. Carreño, Homogeneous and ultrafine-grained metal matrix nanocomposite achieved by accumulative press bonding as a novel severe plastic deformation process. Scripta Mater. 100, 40–43 (2015)

    Article  Google Scholar 

  20. S. Queyreau, G. Monnet, B. Devincre, Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater. 58, 5586–5595 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Brunel Research Catalyst Fund and Dr. L. Zhou for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohreh Khorsand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Khorsand, S., Huang, Y. (2017). Integrated Casting-Extrusion (ICE) of an AA6082 Aluminium Alloy. In: Ratvik, A. (eds) Light Metals 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51541-0_32

Download citation

Publish with us

Policies and ethics