Skip to main content

Spine Balancing Strategy Using Muscle ZMP on Musculoskeletal Humanoid Kenshiro

  • Chapter
  • First Online:
Robotics Research

Abstract

In this paper, we propose a new balancing strategy for musculoskeletal humanoids by using their redundant musculoskeletal structures. This strategy is based on the idea of muscle Zero Moment Point(ZMP) and involves the use of a balance stabilizer utilizing the spine. The muscle ZMP is a stabilization indicator instead of a normal ZMP that is computed from 6DOF force sensors installed on robots’ foot. In order to compute the muscle ZMP, we use the joint torques obtained from muscle tensions. The spine stabilizer compensates for the COG displacement of the whole-body by utilizing the spine movements. Further, we confirm the effectiveness of the proposed strategy by demonstrating several balancing motions of Kenshiro, a musculoskeletal humanoid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kajita, S., Hirukawa, H., Harada, K., Yokoi, K.: Introduction to Humanoid Robotics. Springer, Berlin Heidelberg (2014)

    Book  Google Scholar 

  2. Kajita, S., Morisawa, M., Miura, K., Nakaoka, S., Harada, K., Kaneko, K., Kanehiro, F., Yokoi, K.: Biped walking stabilization based on linear inverted pendulum tracking. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’10), pp. 4489–4496 (2010)

    Google Scholar 

  3. Kozuki, T., Motegi, Y., Shirai, T., Asano, Y., Urata, J., Nakanishi, Y., Okada, K., Inaba, M.: Design of upper limb by adhesion of muscles and bones -detail human mimetic musculoskeletal humanoid Kenshiro. In: Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’13), pp. 935–940 (2013)

    Google Scholar 

  4. Li, Z., Vanderborght, B., Tsagarakis, N.G., Colasanto, L., Caldwell, D.G.: Stabilization for the compliant humanoid robot COMAN exploiting intrinsic and controlled compliance. In: Proceedings of The 2012 IEEE International Conference on Robotics and Automation, pp. 2000–2006 (2012)

    Google Scholar 

  5. Mizuuchi, I., Nakanishi, Y., Sodeyama, Y., Namiki, Y., Nishino, T., Muramatsu, N., Urata, J., Hongo, K., Yoshikai, T., Inaba, M.: An advanced musculoskeletal humanoid Kojiro. In: Proceedings of the 2007 IEEE-RAS International Conference on Humanoid Robots (2007)

    Google Scholar 

  6. Nakanishi, Y., Asano, Y., Kozuki, T., Mizoguchi, H., Motegi, Y., Osada, M., Shirai, T., Urata, J., Okada, K., Inaba, M.: Design concept of detail musculoskeletal humanoid “Kenshiro” toward a real human body musculoskeletal simulator. In: Proceedings of the 2012 IEEE-RAS International Conference on Humanoid Robots, pp. 1–6 (2012)

    Google Scholar 

  7. Nakanishi, Y., Namiki, Y., Hongo, K., Urata, J., Mizuuchi, I., Inaba, M.: Realization of large joint movement while standing by a musculoskeletal humanoid using its spine and legs coordinately. In: Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’08), pp. 205–210 (2008)

    Google Scholar 

  8. Nakanishi, Y., Ohta, S., Shirai, T., Asano, Y., Kozuki, T., Kakehashi, Y., Mizoguchi, H., Kurotobi, T., Motegi, Y., Sasabuchi, K., Urata, J., Okada, K., Mizuuchi, I., Inaba, M.: Design approach of biologically-inspired musculoskeletal humanoids. Int. J. Adv. Robot. Syst. 10, 1–18 (2013)

    Article  Google Scholar 

  9. Nishiwaki, K., Kagami, S.: Strategies for adjusting the ZMP reference trajectory for maintaining balance in humanoid walking. In: Proceedings of The 2010 IEEE International Conference on Robotics and Automation, pp. 4230–4236 (2010)

    Google Scholar 

  10. Ogawa, K., Narioka, K., Hosoda, K.: Development of whole-body humanoid “Pneumat-BS” with pneumatic musculoskeletal system. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’11), pp. 4838–4843 (2011)

    Google Scholar 

  11. Ott, C., Roa, M.A., Hirzinger, G.: Posture and balance control for biped robots based on contact force optimization. In: Proceedings of the 2011 IEEE-RAS International Conference on Humanoid Robots, pp. 26–33 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Asano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Asano, Y. et al. (2018). Spine Balancing Strategy Using Muscle ZMP on Musculoskeletal Humanoid Kenshiro. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-51532-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51532-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51531-1

  • Online ISBN: 978-3-319-51532-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics