Skip to main content

Seismic Anisotropy and Mantle Flow Driven by the Cocos Slab Under Southern Mexico

  • Chapter
  • First Online:
Book cover Geodynamics of the Latin American Pacific Margin

Abstract

Shear wave splitting measurements were made using SKS and SKKS waves recorded by the Meso-American Subduction Experiment, which was deployed in southern Mexico starting at the coast of the Pacific Ocean and running north toward the Gulf of Mexico. In this segment of the Middle America Trench the oceanic Cocos plate subducts under the continental North American plate. The active volcanic arc is located at the southern end of the Trans-Mexican Volcanic Belt. Unlike most subduction zones, however, the volcanic arc is not subparallel to the trench. In the fore-arc, between the trench and the Trans-Mexican Volcanic Belt, the Cocos slab subducts subhorizontally. Beneath the volcanic belt, however, the slab dives steeply into the mantle. A marked difference in the orientation of the fast polarization directions is observed between the fore-arc and the back-arc. In the fore-arc the fast axes determined using SKS phases are oriented NE–SW, in the same direction as the relative motion between the Cocos and North American plates, and are approximately perpendicular to the trench. Physical conditions in the subslab mantle are consistent with the existence of A-type olivine and consequently entrained mantle flow is inferred. Strong coupling between the slab and the surrounding mantle is observed. In the back-arc SKS fast polarization directions are oriented N–S and are perpendicular to the strike of the slab. Given the high temperatures in the mantle wedge tip, the development of A-type, or similar, olivine fabric throughout the mantle wedge is expected. The orientation of the fast axes is consistent with corner flow in the mantle wedge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abt, D.L., Fischer, K.M., Abers, G.A., Strauch, W., Protti, J.M., and González, V. (2009), Shear wave anisotropy beneath Nicaragua and Costa Rica: Implications for flow in the mantle wedge, Geochem. Geophys. Geosyst. 10, Q05S15, doi:10.1029/2009GC002375.

    Article  Google Scholar 

  • Abt, D.L., Fischer, K.M., Abers, G.A., Protti, M., González, V., and Strauch, W. (2010), Constraints on upper mantle anisotropy surrounding the Cocos slab from SK(K)S splitting, J. Geophys. Res. 115, B06316, doi:10.1029/2009JB006710.

    Article  Google Scholar 

  • Atwater, T. and Stock, J. (1991). Pacific North America plate tectonics of the Neogene southwestern United States: An update, Int Geol Rev 40, 375 – 402.

    Article  Google Scholar 

  • Audet, P. (2013), Seismic anisotropy of subducting oceanic uppermost mantle from fossil spreading, Geophys. Res. Lett. 40, 173-177, doi:10.1029/2012GL054328.

    Article  Google Scholar 

  • Audoine, E., Savage, M.K. and Gledhill K. (2004). Anisotropic structure under a back arc spreading region, the Taupo volcanic zone, New Zealand, J Geophys Res 109. doi:10.1029/2003JB02932.

  • Baccheschi, P., Margheriti, L., and Steckler, M.S. (2007). Seismic anisotropy reveals focused mantle flow around the Calabrian slab (Southern Italy), Geophys Res Lett 34, L05302.

    Article  Google Scholar 

  • Bernal-díaz, A., Valenzuela-Wong, R., Pérez-Campos, X., Iglesias, A., and Clayton, R.W. (2008), Anisotropía de la onda SKS en el manto superior debajo del arreglo VEOX (abstract), Geos Boletín Informativo de la UGM 28 (2), 199-200.

    Google Scholar 

  • Bernal-López, L.A. (2015), Anisotropía sísmica y flujo del manto producidos por la placa de Cocos subducida en el sur de México, M. Sc. thesis, 65 pp., Centro de Sismología y Volcanología de Occidente, Universidad de Guadalajara, Puerto Vallarta, Jal., Mexico.

    Google Scholar 

  • Castillo-Castellanos, J.A. (2015), Variaciones de la anisotropía sísmica en la corteza y manto superior en el centro-sur de México, M.Sc. thesis, 147 pp., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico.

    Google Scholar 

  • Castillo, J.A., Pérez-Campos, X., Husker, A.L., and Valenzuela-Wong, R. (2014), Crust and mantle anisotropy variations from the coast to inland in central and southern Mexico, Abstract DI33A-4303 presented at 2014 Fall Meeting, AGU, San Francisco, CA, 15-19 December.

    Google Scholar 

  • Castro-Artola, O.A. (2010), Caracterización de la geometría de la zona Benioff con una red densa de banda ancha en el Istmo de Tehuantepec, B.Sc. thesis, 65 pp., Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico.

    Google Scholar 

  • Currie, C.A., Cassidy, J.F., Hyndman, R. and Bostock, M.G. (2004). Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton, Geophys J Int 157, 341-353.

    Article  Google Scholar 

  • DeMets, C., and Traylen, S. (2000), Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle, Tectonophysics 318, 119-159.

    Article  Google Scholar 

  • DeMets, C., Gordon, R.G., and Argus, D.F. (2010), Geologically current plate motions, Geophys. J. Int. 181, 1-80.

    Article  Google Scholar 

  • Di Leo, J.F., Wookey, J., Hammond, J.O.S., Kendall, J.-M., Kaneshima, S., Inoue, H., Yamashina, T., and Harjadi, P. (2012a). Deformation and mantle flow beneath the Sangihe subduction zone from seismic anisotropy, Phys Earth Planet Inter 194-195, 38-54. doi:10.1016/j.pepi.2012.01.008.

    Article  Google Scholar 

  • Di Leo, J.F., Wookey, J., Hammond, J.O.S., Kendall, J.-M., Kaneshima, S., Inoue, H., Yamashina, T., and Harjadi P. (2012b). Mantle flow in regions of complex tectonics: Insights from Indonesia, Geochem Geophys Geosyst 13, Q12008. doi:10.1029/2012GC004417.

    Article  Google Scholar 

  • Eakin, C.M., Obrebski, M., Allen, R.M., Boyarko, D.C., Brudzinski, M.R., and Porritt, R.(2010), Seismic anisotropy beneath Cascadia and the Mendocino triple junction: Interaction of the subducting slab with mantle flow, Earth Planet. Sci. Lett. 297, 627-632.

    Google Scholar 

  • Ferrari, L., Orozco-Esquivel, T., Manea, T. and Manea, V.C. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone, Tectonophysics 522-523, 122 – 149.

    Article  Google Scholar 

  • Foley, B., and Long, M.D. (2011), Upper and mid-mantle anisotropy beneath the Tonga slab, Geophys. Res. Lett.38, L02303, doi:10.1029/2010GL046021.

    Article  Google Scholar 

  • Gill, J.B., Orogenic andesites and plate tectonics, “Minerals and rocks, vol. 16” (Springer, Berlin 1981).

    Chapter  Google Scholar 

  • Gripp, A.E., and Gordon, R.G. (2002), Young tracks of hotspots and current plate velocities, Geophys. J. Int. 150, 321-361.

    Article  Google Scholar 

  • Hammond, J.O.S., Wookey, J., Kaneshima, S., Inoue, H., Yamashina, T. and Harjadi, P. (2010). Systematic variation in anisotropy beneath the mantle wedge in the Java-Sumatra subduction system from shear wave splitting, Phys Earth Planet Inter 178, 189-201.

    Article  Google Scholar 

  • Husker, A. and Davis, P.M. (2009), Tomography and thermal state of the Cocos plate subduction beneath Mexico City, J. Geophys. Res. 114, B04306, doi:10.1029/2008JB006039.

    Article  Google Scholar 

  • Ismaïl, W.B., and Mainprice, D. (1998), An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy, Tectonophysics 296, 145-157, doi:10.1016/S0040-1951(98)00141-3.

    Article  Google Scholar 

  • Jung, H., Katayama, I., Jiang, Z., Hiraga, T., and Karato, S. (2006). Effect of water and stress on the lattice preferred orientation (LPO) of olivine, Tectonophysics 421, 1-22.

    Article  Google Scholar 

  • Kanjorski, M.N. (2003), Cocos plate structure along the Middle America subduction zone off Oaxaca and Guerrero, Mexico: Influence of subducting plate morphology on tectonics and seismicity, Ph.D. thesis, University of California, San Diego, CA, USA.

    Google Scholar 

  • Karato, S.-i., Jung, H., Katayama, I. and Skemer, P. (2008). Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratories studies, Annu. Rev. Earth Planet. Sci. 36, 59-95.

    Article  Google Scholar 

  • Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., and Suyehiro, K. (2009), Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates, Science 324, 499-502, doi:10.1126/science.1169499.

    Article  Google Scholar 

  • Kim, Y., Clayton, R.W., and Jackson, J.M. (2010), Geometry and seismic properties of the subducting Cocos plate in central Mexico, J. Geophys. Res. 115, B06310, doi:10.1029/2009JB006942.

    Article  Google Scholar 

  • Király, E., Bianchi, I., and Bokelmann, G. (2012). Seismic anisotropy in the south western Pacific region from shear wave splitting, Geophys Res Lett 39, L05302.

    Article  Google Scholar 

  • Kneller, E.A, van keken, P.E., Karato, S.-i., and Park, J. (2005), B-type olivine fabric in the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models, Earth Planet. Sci. Lett. 237, 781-797, doi:10.1016/j.epsl.2005.06.049.

    Article  Google Scholar 

  • León soto, G., and Valenzuela, R.W. (2013), Corner flow in the Isthmus of Tehuantepec, Mexico inferred from anisotropy measurements using local intraslab earthquakes, Geophys. J. Int. 195, 1230-1238, doi:10.1093/gji/ggt291.

    Article  Google Scholar 

  • León Soto, G., Ni, J.F., Grand, S.P., Sandvol, E., Valenzuela, R.W., Guzmán Speziale, M., Gómez González, J.M., and Domínguez Reyes, T. (2009), Mantle flow in the Rivera-Cocos subduction zone, Geophys. J. Int. 179, 1004-1012, doi:10.1111/j.1365-246X.2009.04352x.

    Article  Google Scholar 

  • Levin, V., Droznin, D., Park, J. and Gordeev, E. (2004). Detailed mapping of seismic anisotropy with local shear waves in southeastern Kamchatka, Geophys J Int 158, 1009-1023.

    Article  Google Scholar 

  • Long, M.D. (2009). Complex anisotropy in D” beneath the eastern Pacific from SKS-SKKS splitting discrepancies, Earth Planet Sci. Lett. 283, 181-189.

    Google Scholar 

  • Long, M.D. (2013). Constraints on subduction geodynamics from seismic anisotropy, Rev Geophys 51, 76-112.

    Article  Google Scholar 

  • Long, M.D. and Silver, P.G. (2008). The subduction zone flow field from seismic anisotropy: A global view, Science 319, 315-318.

    Article  Google Scholar 

  • Long, M.D., and Silver, P.G. (2009), Mantle flow in subduction systems: The subslab flow field and implications for mantle dynamics, J. Geophys. Res. 114, B10312, doi:10.1029/2008JB006200.

    Article  Google Scholar 

  • Long, M.D. and Van der Hilst, R.D. (2005). Upper mantle anisotropy beneath Japan from shear wave splitting, Phys Earth Planet Inter 151, 206-222.

    Article  Google Scholar 

  • Long, M.D. and Van der Hilst, R.D. (2006). Shear wave splitting from local events beneath the Ryukyu arc: Trench parallel anisotropy in the mantle wedge, Phys Earth Planet Inter 155, 300-312.

    Article  Google Scholar 

  • Long, M.D., and Wirth, E.A. (2013), Mantle flow in subduction systems: The mantle wedge flow field and implications for wedge processes, J. Geophys. Res. Solid Earth 118, 583–606, doi:10.1002/jgrb.50063.

    Article  Google Scholar 

  • Lynner, C., and Long, M.D. (2013), Sub-slab seismic anisotropy and mantle flow beneath the Caribbean and Scotia subduction zones: Effects of slab morphology and kinematics, Earth Planet. Sci. Lett. 361, 367-378, doi:10.1016/j.epsl.2012.11.007.

    Article  Google Scholar 

  • lynner, C., and Long, M.D. (2014a), Sub-slab anisotropy beneath the Sumatra and circum-Pacific subduction zones from source-side shear wave splitting observations, Geochem. Geophys. Geosyst. 15, 2262–2281, doi:10.1002/2014GC005239.

    Article  Google Scholar 

  • Lynner, C., and Long, M.D. (2014b), Testing models of sub-slab anisotropy using a global compilation of source-side shear wave splitting data, J. Geophys. Res. Solid Earth 119, 7226–7244, doi:10.1002/2014JB010983.

    Article  Google Scholar 

  • Macías, J.L. (2005), Geología e historia eruptiva de algunos de los grandes volcanes activos de México, Bol. Soc. Geol. Mex. LVII, 379-424.

    Article  Google Scholar 

  • Manea, M., and Manea, V.C. (2008), On the origin of El Chichón volcano and subduction of Tehuantepec Ridge: A geodynamical perspective, J. Volcanol. Geoth. Res. 175, 459-471, doi:10.1016/j.volgeores.2008.02.028.

    Article  Google Scholar 

  • Manea, V.C., and Manea, M. (2011), Flat-slab thermal structure and evolution beneath central Mexico, Pure Appl. Geophys. 168, 1475-1487, doi:10.1007/s00024-010-0207-9.

    Article  Google Scholar 

  • Manea, V., Manea, M., Kostoglodov, V., and Sewell, G. (2006), Intraslab seismicity and thermal stress in the subducted Cocos plate beneath central Mexico, Tectonophysics 420, 389-408, doi:10.1016/j.tecto.2006.03.029.

    Article  Google Scholar 

  • Mase (2007), Meso America subduction experiment, Caltech, dataset, Pasadena, CA, USA, doi:10.7909/C3RN35SP.

    Article  Google Scholar 

  • Özalaybey, S., and Savage, M.K. (1994), Double-layer anisotropy resolved from S phases, Geophys. J. Int. 117, 653-664.

    Article  Google Scholar 

  • Özalaybey, S., and Savage, M.K. (1995), Shear-wave splitting beneath western United States in relation to plate tectonics, J. Geophys. Res. 100, 18,135-18,149.

    Article  Google Scholar 

  • Pacheco, J.F., and Singh, S.K. (2010), Seismicity and state of stress in Guerrero segment of the Mexican subduction zone, J. Geophys. Res. 115, B01303, doi:10.1029/2009JB006453.

    Article  Google Scholar 

  • Paczkowski, K., Montési, L.G.J., Long, M.D., and Thissen, C.J. (2014a), Three-dimensional flow in the subslab mantle, Geochem. Geophys. Geosyst. 15, 3989-4008, doi:10.1002/2014GC005441.

    Article  Google Scholar 

  • Paczkowski, K., Thissen, C.J., Long, M.D., and Montési, L.G.J. (2014b), Deflection of mantle flow beneath subducting slabs and the origin of subslab anisotropy, Geophys. Res. Lett. 41, 6734-6742, doi:10.1002/2014GL060914.

    Article  Google Scholar 

  • Pardo, G., and Suárez, M. (1995). Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications, J Geophys Res 100, 12,3357 – 12,373.

    Article  Google Scholar 

  • Payero, J.S., Kostoglodov, V., Shapiro, N., Mikumo, T., Iglesias, A., Pérez-Campos, X. and Clayton, R.W. (2008). Nonvolcanic tremor observed in the Mexican subduction zone, J Geophys Res 35, L07305.

    Google Scholar 

  • Peyton, V., Levin, V., Park, J., Brandon, M., Lees, J., Gordeev, E., and Ozerov, A. (2001). Mantle flow at a slab edge: Seismic anisotropy in the Kamchatka region, Geophys Res Lett 28, 379- 382.

    Article  Google Scholar 

  • Pérez-Campos, X., Kim, Y., Husker, A., Davis, P., Clayton, R., Iglesias, A., Pacheco, J.F., Singh, S.K., Manea, V.C. and Gurnis, M. (2008). Horizontal subduction and truncation of the Cocos plate beneath Central Mexico, Geophys Res Lett 35, L18303.

    Article  Google Scholar 

  • Perttu, A., Christensen, D., Abers, G., and Song, X. (2014). Insights into the mantle structure and flow beneath Alaska based on a decade of observations of shear wave splitting, J Geophys Res 119, 8366-8377.

    Article  Google Scholar 

  • Phipps Morgan, J., Hasenclever, J., Hort, M., Rüpke, L., and Parmentier, E.M. (2007), On subducting slab entrainment of buoyant asthenosphere, Terra Nova 19, 167-173, doi:10.1111/j.1365-3121.2007.00737.x.

    Article  Google Scholar 

  • Piñero-Felicangeli, L., and Kendall, J.-M. (2008). Sub-slab mantle flow parallel to the Caribbean plate boundaries: Inferences from SKS splitting, Tectonophysics 462, 22-34.

    Article  Google Scholar 

  • Ponce-Cortés, J.G. (2012), Medición de la anisotropía de las ondas SKS en el manto superior, debajo de las estaciones permanentes del Servicio Sismológico Nacional instaladas a partir del año 2005, B.Sc. thesis, 79 pp., Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico.

    Google Scholar 

  • Radiguet, M., Cotton, F., Vergnolle, M., Campillo, M., Walpersdorf, A., Cotte, N., and Kostoglodov, V. (2012). Slow slip events and strain accumulation in the Guerrero gap, Mexico, J Geophys Res 117, B04305.

    Article  Google Scholar 

  • Rodríguez-Pérez, Q. (2007), Estructura tridimensional de velocidades para el sureste de México, mediante el análisis de trazado de rayos sísmicos de sismos regionales, M.Sc. thesis, 83 pp., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico.

    Google Scholar 

  • Rojo-Garibaldi, B. (2011), Anisotropía de las ondas SKS en el manto superior debajo de un arreglo sísmico entre Guerrero y Veracruz, B. Sc. thesis, 84 pp., Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.

    Google Scholar 

  • Russo, R.M. (2009). Subducted oceanic asthenosphere and upper mantle flow beneath the Juan de Fuca slab, Lithosphere 1, 195-205.

    Article  Google Scholar 

  • Russo, R.M., and Silver, P.G. (1994). Trench-parallel flow beneath the Nazca plate from seismic anisotropy, Science 263, 1105-1111.

    Article  Google Scholar 

  • Savage, M.K. (1999), Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?, Rev. Geophys. 37, 65-106.

    Article  Google Scholar 

  • Silver, P.G. (1996), Seismic anisotropy beneath the continents: Probing the depths of Geology, Annu. Rev. Earth Planet. Sci. 24, 385-432.

    Article  Google Scholar 

  • Silver, P.G., and Chan, W.W. (1991). Shear wave splitting and subcontinental mantle deformation, J Geophys R 96, 16429 – 16454.

    Article  Google Scholar 

  • Silver, P.G., and Kaneshima, S. (1993), Constraints on mantle anisotropy beneath Precambrian North America from a transportable teleseismic experiment, Geophys. Res. Lett. 20, 1127-1130.

    Article  Google Scholar 

  • Silver, P.G., and Savage, M.K. (1994), The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers, Geophys. J. Int. 119, 949-963.

    Article  Google Scholar 

  • Song, T.-R.A., and Kawakatsu, H. (2012), Subduction of oceanic asthenosphere: Evidence from sub-slab seismic anisotropy, Geophys. Res. Lett. 39, L17301, doi:10.1029/2012GL052639.

    Article  Google Scholar 

  • Song, T.-R.A., and Kim, Y. (2012a), Anisotropic uppermost mantle in young subducted slab underplating central Mexico, Nat. Geosci. 5, 55-59, doi:10.1038/ngeo1342.

    Article  Google Scholar 

  • Song, T.-R.A., and Kim, Y. (2012b), Localized seismic anisotropy associated with long-term slow-slip events beneath southern Mexico, Geophys. Res. Lett. 39, L09308, doi:10.1029/2012GL051324.

    Article  Google Scholar 

  • Stubailo, I. (2015), Seismic anisotropy below Mexico and its implications for mantle dynamics, Ph.D. thesis, 119 pp., University of California, Los Angeles, CA, USA.

    Google Scholar 

  • Stubailo, I., and Davis, P. (2007), Shear wave splitting measurements and interpretation beneath Acapulco-Tampico transect in Mexico, Eos Trans. AGU 88 (52), Fall Meet. Suppl. Abstract T51B-0539.

    Google Scholar 

  • Stubailo, I., and Davis, P.M. (2012a), Anisotropy of the Mexico subduction zone based on shear-wave splitting analysis (abstract), Seism. Res. Lett. 83 (2), 379.

    Google Scholar 

  • Stubailo, I., and Davis, P.M. (2012b), Anisotropy of the Mexico subduction zone based on shear-wave splitting and higher modes analysis, Abstract T11A-2538 presented at 2012 Fall Meeting, AGU, San Francisco, CA, 3-7 December.

    Google Scholar 

  • Stubailo, I., and Davis, P.M. (2015), The surface wave, shear wave splitting, and higher mode seismic anisotropy comparison of the Mexican subduction zone (abstract), Seism. Res. Lett. 86 (2B), 677.

    Google Scholar 

  • Stubailo, I., Beghein, C., and Davis, P.M. (2012), Structure and anisotropy of the Mexico subduction zone based on Rayleigh-wave analysis and implications for the geometry of the Trans-Mexican Volcanic Belt, J. Geophys. Res. 117, B05303, doi:10.1029/2011JB008631.

    Article  Google Scholar 

  • Suarez, G., and Singh, S.K. (1986), Tectonic interpretation of the Trans-Mexican Volcanic Belt―Discussion, Tectonophysics 127, 155-158.

    Article  Google Scholar 

  • Syracuse, E.M., and Abers, G.A. (2006), Global compilation of variations in slab depth beneath arc volcanoes and implications, Geochem. Geophys. Geosyst. 7, Q05017, doi:10.1029/2005GC001045.

    Article  Google Scholar 

  • Tatsumi, W., and Eggins, S., Subduction Zone Magmatism, “Frontiers in Earth Science” (Blackwell Science, Cambridge, MA, USA1995).

    Google Scholar 

  • Van Benthem, S.A.C.(2005), Anisotropy and flow in the uppermantle under Mexico, M. Sc. thesis, 41 pp., Utrecht University, Utrecht, The Netherlands.

    Google Scholar 

  • Van Benthem, S.A.C., Valenzuela, R.W., and Ponce, G.J. (2013), Measurements of shear wave anisotropy from a permanent network in southern Mexico, Geofís. Int. 52, 385–402, doi:10.1016/S0016-7169(13)71485-5.

    Article  Google Scholar 

  • Wessel, P., and Smith, W.H.F. (1998), New, improved version of Generic Mapping Tools released, Eos Trans. AGU 79, 579.

    Article  Google Scholar 

  • Wirth, E., and Long, M.D. (2010). Frequency-dependent shear wave splitting beneath the Japan and Izu-Bonin subduction zones, Phys Earth Planet Inter 181, 141-154. doi:10.1016/j.pepi.2010.05.006.

    Article  Google Scholar 

  • Wolfe, C.J., and Silver, P.G. (1998). Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations, J Geophys R 103, 749-771.

    Article  Google Scholar 

  • Wookey, J., Kendall, J.-M., and Rumpker, G. (2005). Lowermost mantle anisotropy beneath the north Pacific from differential S-ScS splitting, Geophys J Int 161, 829-838.

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Manuel Velásquez for computer support; Rob Clayton, Vlad Manea, and Marina Manea for discussions and suggestions. We are also thankful to Xyoli Pérez-Campos, Rob Clayton, Arturo Iglesias, Shri Krishna Singh, Paul Davis, and Allen Husker for access to the MASE data; and also to all the volunteers who contributed their time for field work. We are thankful to Karen Fischer for providing the computer code used in the early stages of this project to measure the splitting parameters. The suggestions made by two anonymous reviewers greatly enriched the manuscript. One of us (GLS) received a postdoctoral fellowship from Mexico’s Consejo Nacional de Ciencia y Tecnología for work at Centro de Sismología y Volcanología de Occidente, Universidad de Guadalajara. This work was funded by Universidad Nacional Autónoma de México through Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, PAPIIT grant IN112814. The MASE experiment was supported by the Tectonics Observatory at the California Institute of Technology and by the Center for Embedded Network Sensors (CENS) at the University of California Los Angeles. The MASE experiment was funded by the Gordon and Betty Moore Foundation. The maps and figures in this study were made using the Generic Mapping Tools package (Wessel and Smith 1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl W. Valenzuela .

Editor information

Editors and Affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 459 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Bernal-López, L.A., Garibaldi, B.R., León Soto, G., Valenzuela, R.W., Escudero, C.R. (2015). Seismic Anisotropy and Mantle Flow Driven by the Cocos Slab Under Southern Mexico. In: Bandy, W.L., Dañobeitia, J., Gutiérrez, C., Taran, Y., Bartolomé, R. (eds) Geodynamics of the Latin American Pacific Margin. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-51529-8_10

Download citation

Publish with us

Policies and ethics