Advertisement

Electromagnetic Scattering by a Chiral Impedance Screen

  • C. E AthanasiadisEmail author
  • V. Sevroglou
  • K. I. Skourogiannis
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 113)

Abstract

In this paper the solvability of the direct electromagnetic scattering problem by an impedance screen in a chiral environment is presented. Time-harmonic electromagnetic plane waves in a chiral medium are considered as incident fields. These propagating fields are scattered by an obstacle which is a partially coated open surface \(\Gamma \), well known as the “screen”. Uniqueness results are proved using appropriate relations for Beltrami fields, and in addition, existence results are established by using a variational method in suitable functional space setting.

Keywords

Chiral media Beltrami fields Impedance boundary conditions 

Mathematics Subject Classifications:

35P25 35Q60 78A40 

References

  1. 1.
    H. Ammari, J.C. Nedelec, Time-harmonic electromagnetic fields in thin chiral curved layers. SIAM J. Math. Anal. 29 (2), 395–423 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    H. Ammari, K. Hamdache, J.C. Nedelec, Chirality in the Maxwell equations by the dipole approximation method. SIAM J. Appl. Math. 59, 2045–2059 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    C.E. Athanasiadis, E. Kardasi, Beltrami Herglotz functions for electromagnetic scattering. Appl. Anal. 84 (2), 145–163 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    C.E. Athanasiadis, P.A. Martin, I.G. Stratis, Electromagnetic scattering by a homogeneous chiral obstacle: boundary integral equations and low–chirality approximations. SIAM J. Appl. Math. 59 (5), 1745–1762 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    C.E. Athanasiadis, G. Costakis, I.G. Stratis, Electromagnetic scattering by a homogeneous chiral obstacle in a chiral environment. IMA J. Appl. Math. 64, 245–258 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    C.E. Athanasiadis, G. Costakis, I.G. Stratis, Electromagnetic scattering by a perfectly conducting obstacle in a homogeneous chiral environment: solvability and low-frequency theory. Math. Methods Appl. Sci. 25, 927–944 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    C.E. Athanasiadis, D. Natrosvili, V. Sevroglou, I.G. Stratis, A boundary integral equations approach for direct mixed impedance problems in elasticity. Integr. Equ. Appl. 23 (2), 183–222 (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    C.E. Athanasiadis, V. Sevroglou, K.I. Skourogiannis, The direct electromagnetic scattering problem by a mixed impedance screen in chiral media. Appl. Anal. 91 (11), 1–11 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    C.E. Athanasiadis, V. Sevroglou, K.I. Skourogiannis, The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inv. Prob. Imag. 9 (4), 951–970 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    F. Cakoni, D. Colton, Qualitative Methods in Inverse Electromagnetic Scattering Theory (Springer, Berlin, 2005)zbMATHGoogle Scholar
  11. 11.
    F. Cakoni, E. Darringrand, The inverse electromagnetic scattering problem for a mixed boundary value problem for screens. Comput. Appl. Math. 174, 251–269 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    D. Colton, R. Kress, Integral Equation Methods in Scattering Theory (Wiley, New York, 1983)zbMATHGoogle Scholar
  13. 13.
    D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer, Berlin, 1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, Singapore, 1994)CrossRefGoogle Scholar
  15. 15.
    A. Lakhtakia, V.K. Varadan, V.V. Varadan, Time-harmonic Electromagnetic Fields in Chiral Media. Lecture Notes in Physics (Springer, Berlin, 1989)Google Scholar
  16. 16.
    A. Lakhtakia, V.K. Varadan, V.V. Varadan, Surface integral equations for scattering by PEC scatterers in isotropic chiral media. Int. J. Eng. Sci. 29, 79–185 (1991)MathSciNetCrossRefGoogle Scholar
  17. 17.
    I.V. Lindell, A.H. Sihvola, S.A. Tretyakov, A.J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media (Artech House, Boston, 1994)Google Scholar
  18. 18.
    P. Monk, Finite Element Methods for Maxwell’s Equations (Clarendon, Oxford, 2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • C. E Athanasiadis
    • 1
    Email author
  • V. Sevroglou
    • 2
  • K. I. Skourogiannis
    • 1
  1. 1.Department of MathematicsNational and Kapodistrian University of Athens, PanepistimiopolisAthensGreece
  2. 2.Department of Statistics and Insurance ScienceUniversity of PiraeusPiraeusGreece

Personalised recommendations