Advertisement

Optimal Inventory Policies for Finite Horizon Inventory Models with Time Varying Demand: A Unified Presentation

  • Konstantina SkouriEmail author
  • Lakdere Benkherouf
  • Ioannis Konstantaras
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 113)

Abstract

This paper aims to put forward a general framework for derivation of optimal control policies for inventory systems with time varying demand over a finite planning horizon. This permits the treatment of a large number of known inventory problems in a unified manner. As decision variables are considered the number of cycles and the times that each cycle starts and ends, where the term cycle can be used to represent various operational activities in inventory control. If the objective function, for a fixed number of cycles, passes successfully a couple of tests, then existence and uniqueness of a solution of the corresponding optimization problem is guaranteed. In this case, the search for the optimal solution reduces to a univariate search problem on a bounded interval. This together with a convexity (like) property leads to the optimal inventory policy.

Keywords

Inventory Optimization Finite horizon Time varying demand 

2010 Mathematics Subject Classification:

90B05; 90C30 

References

  1. 1.
    E.A. Silver, D.F. Pyke, R. Peterson, Inventory Management and Production Planning and Scheduling (Wiley, New-York, 1998)Google Scholar
  2. 2.
    C.R. Carr, C.W. Howe, Optimal service policies and finite time horizons. Manag. Sci. 9, 126–140 (1962)CrossRefGoogle Scholar
  3. 3.
    M. Resh, M. Friedman, L.C. Barbosa, On a general solution of the deterministic lot size problem with time-proportional demand. Oper. Res. 24, 718–725 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    W.A. Donaldson, Inventory replenishment policy for a linear trend in demand–An analytical solution. Oper. Res. Q. 28, 663–670 (1977)CrossRefzbMATHGoogle Scholar
  5. 5.
    L.C. Barbosa, M. Friedman, Optimal policies for inventory models with some specified markets and finite time horizon. Eur. J. Oper. Res. 8, 175–183 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    R.J. Henery, Inventory replenishment policy for increasing demand. J. Oper. Res. Soc. 30, 611–617 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M.F. Friedman, Inventory lot–size models with general time–dependent demand and carrying cost functions. INFOR 20, 157–167 (1982)zbMATHGoogle Scholar
  8. 8.
    E.V. Denardo, G. Huberman, U.G. Rothblum, Optimal locations on a line are interleaved. Oper. Res. 30, 745–759 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    D. Yao, M. Klein, Lot sizes under continuous demand: the backorder case. Nav. Res. Logist. 36, 615–624 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M.F. Friedman, On some optimality conditions and their equivalence in time dependent inventory models. Comput. Oper. Res. 11, 245–251 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    R.M. Hill, Batching policies for linearly increasing demand with a finite input rate. Int. J. Prod. Econ. 43, 149–154 (1996)CrossRefGoogle Scholar
  12. 12.
    R.M. Hill, M. Omar, D.K. Smith, Stock replenishment policy for deterministic linearly increasing demand with a finite input rate. J. Sains 8, 977–986 (2000)Google Scholar
  13. 13.
    M. Omar, D.K. Smith, An optimal batch size for a production system under linearly increasing-time varying demand process. Comput. Ind. Eng. 42, 35–42 (2002)CrossRefGoogle Scholar
  14. 14.
    H. Rau, B.C. Ou Yang, A general and optimal approach for three inventory models with a linear trend in demand. Comput. Ind. Eng. 52, 521–532 (2007)CrossRefGoogle Scholar
  15. 15.
    T.M. Al-Khamis, L. Benkherouf, M.A. Omar, Optimal policies for a finite–horizon batching inventory model. Int. J. Syst. Sci. 45, 2196–2202 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    L. Benkherouf, B.H. Gilding, On a class of optimization problems for finite time horizon inventory models. SIAM J. Control. Optim. 48, 993–1030 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    S.K. Goyal, D. Morrin, F. Nebebe, The finite horizon trended inventory replenishment problem with shortages. J. Oper. Res. Soc. 43, 1173–1178 (1992)CrossRefzbMATHGoogle Scholar
  18. 18.
    A.K. Bhunia, M. Maiti, An inventory model of deteriorating items with lot-size dependent replenishment cost and a linear trend in demand. Appl. Math. Model. 23, 301–308 (1999)CrossRefzbMATHGoogle Scholar
  19. 19.
    K. Skouri, S. Papachristos, A continuous review inventory model, with deteriorating items, time-varying demand, linear replenishment cost, partially time-varying backlogging. Appl. Math. Model. 26, 603–617 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    L.C. Barbosa, M. Friedman, Deterministic inventory lot size models–a general root law. Manag. Sci. 24, 819–826 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    U. Dave, On a heuristic inventory replenishment rule for items with linearly increasing demand incorporating shortages. J. Oper. Res. Soc. 40, 827–830 (1989)CrossRefzbMATHGoogle Scholar
  22. 22.
    J.-T. Teng, A note on inventory replenishment policy for increasing demand. J. Oper. Res. Soc. 45, 1335–1337 (1994)zbMATHGoogle Scholar
  23. 23.
    J.-T. Teng, A deterministic inventory replenishment model with a linear trend in demand. Oper. Res. Lett. 19, 33–41 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    T. Chakrabarti, K.S. Chaudhuri, An EOQ model for deteriorating items with a linear trend in demand and shortages in all cycles. Int. J. Prod. Econ. 49, 205–213 (1997)CrossRefGoogle Scholar
  25. 25.
    T. Chakrabarty, B.C. Giri, K.S. Chaudhuri, An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: an extension of Philip’s model. Comput. Oper. Res. 25, 649–657 (1998)CrossRefzbMATHGoogle Scholar
  26. 26.
    H.-J. Chang, C.-Y. Dye, An EOQ model for deteriorating items with time varying demand and partial backlogging. J. Oper. Res. Soc. 50, 1176–1182 (1999)CrossRefzbMATHGoogle Scholar
  27. 27.
    J.-T. Teng, M.-S. Chern, H.-L. Yang, Y.J. Wang, Deterministic lot-size inventory models with shortages and deterioration for fluctuating demand. Oper. Res. Lett. 24, 65–72 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    H.M. Wee, H.M. Mercan, Exponentially decaying inventory with partial back–ordering. Optim. Control Appl. Meth. 20, 43–50 (1999)MathSciNetCrossRefGoogle Scholar
  29. 29.
    S. Papachristos, K. Skouri, An optimal replenishment policy for deteriorating items with time varying demand and partial–exponential type– backlogging. Oper. Res. Lett. 27, 175–184 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    J.-T. Teng, H.J. Chang, C.Y. Dye, C.H. Hung, An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging. Oper. Res. Lett. 30, 387–393 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    K. Skouri, S. Papachristos, Optimal stopping and restarting production times for an EOQ model with deteriorating items and time dependent partial backlogging. Int. J. Prod. Econ. 81–82, 525–531 (2003)CrossRefGoogle Scholar
  32. 32.
    B.H. Gilding, Inflation and the optimal inventory replenishment schedule within a finite planning horizon. Eur. J. Oper. Res. 234, 683–693 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    S. Bose, A. Goswami, K.S. Chaudhuri, An EOQ model for deteriorating items with linear time-dependent demand rate and shortages under inflation and time discounting. J. Oper. Res. Soc. 46, 771–782 (1995)CrossRefzbMATHGoogle Scholar
  34. 34.
    M.J. Chandra, M.L. Bahner, The effects of inflation and the time value of money on some inventory systems. Int. J. Prod. Res. 23, 723–730 (1985)CrossRefGoogle Scholar
  35. 35.
    M.-S. Chern, H.-L. Yang, J.-T. Teng, S. Papachristos, Partial backlogging inventory lot–size models for deteriorating items with fluctuating demand under inflation. Eur. J. Oper. Res. 191, 127–141 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    K.-J. Chung, J. Liu, S.-F. Tsai, Inventory systems for deteriorating items taking account of time value. Eng. Optim. 27, 303–320 (1997)CrossRefGoogle Scholar
  37. 37.
    T.K. Datta, A.K. Pal, Effects of inflation and time-value of money on an inventory model with linear time-dependent demand rate and shortages. Eur. J. Oper. Res. 52, 326–333 (1991)CrossRefGoogle Scholar
  38. 38.
    C.-Y. Dye, T.-P. Hsieh, Deterministic ordering policy with price- and stock dependent demand under fluctuating cost and limited capacity. Expert Syst. Appl. 38, 14976–14983 (2011)CrossRefGoogle Scholar
  39. 39.
    M.A. Hariga, Effects of inflation and time-value of money on an inventory model with time-dependent demand rate and shortages. Eur. J. Oper. Res. 81, 512–520 (1995)CrossRefzbMATHGoogle Scholar
  40. 40.
    T.-P. Hsieh, C.-Y. Dye, Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation. Expert Syst. Appl. 37, 7234–7242 (2010)CrossRefGoogle Scholar
  41. 41.
    I. Moon, B.C. Giri, B. Ko, Economic order quantity models for ameliorating/deteriorating items under inflation and time discounting. Eur. J. Oper. Res. 162, 773–785 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    H.-L. Yang, J.-T. Teng, M.-S. Chern, Deterministic inventory lot-size models under inflation with shortages and deterioration for fluctuating demand. Nav. Res. Logist. 48, 144–158 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    H.-L. Yang, J.-T. Teng, M.-S. Chern, An inventory model under inflation for deteriorating items with stock-dependent consumption rate and partial backlogging shortages. Int. J. Prod. Econ. 123, 8–19 (2010)CrossRefGoogle Scholar
  44. 44.
    L. Benkherouf, M. Omar, Optimal integrated policies for a single-vendor single-buyer time-varying demand model. Comput. Math. Appl. 60, 2066–2077 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    M. Omar, An integrated equal-lots policy for shipping a vendor’s final production batch to a single buyer under linear decreasing demand. Int. J. Prod. Econ. 118, 185–188 (2009)CrossRefGoogle Scholar
  46. 46.
    Z.T. Balkhi, On a finite production lot size inventory model for deteriorating items: an optimal solution. Eur. J. Oper. Res. 132, 210–223 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    S. Sana, S.K. Goyal, K.S. Chaudhuri, Production–inventory model for a deteriorating item with trended demand and shortages. Eur. J. Oper. Res. 157, 357–371 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    H.-L. Yang, A partial backlogging production–inventory lot–size model for deteriorating items with time–varying production and demand rate over a finite time horizon. Int. J. Syst. Sci. 42, 1397–1407 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    L. Benkherouf, D. Boushehri, Optimal policies for a finite–horizon production inventory model. Adv. Oper. Res. Article ID 768929, 16 pages. DOI:10.1155/2012/768929 (2012)Google Scholar
  50. 50.
    L. Benkherouf, K. Skouri, I. Konstantaras, Optimal lot sizing for a production–recovery system with time–varying demand over a finite planning horizon. IMA J. Manag. Math. 25, 403–420 (2014)MathSciNetCrossRefGoogle Scholar
  51. 51.
    L. Benkherouf, K. Skouri, I. Konstantaras, Optimal control of production, remanufacturing and refurbishing activities in a finite planning horizon inventory system. J. Optim. Theory Appl. 168, 677–698 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Konstantina Skouri
    • 1
    Email author
  • Lakdere Benkherouf
    • 2
  • Ioannis Konstantaras
    • 3
  1. 1.Department of MathematicsUniversity of IoanninaIoanninaGreece
  2. 2.Faculty of Science, Department of Statistics and Operations ResearchKuwait UniversitySafatKuwait
  3. 3.Department of Business Administration, School of Business AdministrationUniversity of MacedoniaThessalonikiGreece

Personalised recommendations