Skip to main content

Non-equilibrium Solutions of Dynamic Networks: A Hybrid System Approach

  • Chapter
  • First Online:
Operations Research, Engineering, and Cyber Security

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 113))

  • 1139 Accesses

Abstract

Many dynamic networks can be analyzed through the framework of equilibrium problems. While traditionally, the study of equilibrium problems is solely concerned with obtaining or approximating equilibrium solutions, the study of equilibrium problems not in equilibrium provides valuable information into dynamic network behavior. One approach to study such non-equilibrium solutions stems from a connection between equilibrium problems and a class of parametrized projected differential equations. However, there is a drawback of this approach: the requirement of observing distributions of demands and costs. To address this problem we develop a hybrid system framework to model non-equilibrium solutions of dynamic networks, which only requires point observations. We demonstrate stability properties of the hybrid system framework and illustrate the novelty of our approach with a dynamic traffic network example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.P. Aubin, A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer (1984)

    Google Scholar 

  2. J.P. Aubin, A. Cellina, Differential inclusions. J. Appl. Math. Mech. 67 (2), 100 (1987)

    Google Scholar 

  3. A. Barbagallo, M.G. Cojocaru, Dynamic equilibrium formulation of the oligopolistic market problem. Math. Comput. Model. 49, 966–976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Brogliato, A. Daniilidis, C. Lemaréchal, V. Acary, On the equivalence between complementarity systems, projected systems and differential inclusions. Syst. Control Lett. 55, 45–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. M.-G. Cojocaru, Double-Layer Dynamics Theory and Human Migration After Catastrophic Events (Bergamo University Press, Bergamo, 2007)

    Google Scholar 

  6. M.G. Cojocaru, Piecewise solutions of evolutionary variational inequalities. Consequences for the doublelayer dynamics modelling of equilibrium problems. J. Inequal. Pure Appl. Math. 8 (2), 17 (2007)

    Google Scholar 

  7. M.-G. Cojocaru, L.B. Jonker, Existence of solutions to projected differential equations in Hilbert spaces. Proc. Am. Math. Soc. 132, 183–193 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. M.G. Cojocaru, P. Daniele, A. Nagurney, Projected dynamical systems and evolutionary variational inequalities via Hilbert spaces with applications. J. Optim. Theory Appl. 127, 549–563 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. M.G. Cojocaru, P. Daniele, A. Nagurney, Double-layered dynamics: a unified theory of projected dynamical systems and evolutionary variational inequalities. Eur. J. Oper. Res. 175, 494–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. M.G. Cojocaru, C.T. Bauch, M.D. Johnston, Dynamics of vaccination strategies via projected dynamical systems. Bull. Math. Biol. 69, 1453–1476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Cojocaru, P. Daniele, A. Nagurney, Projected dynamical systems, evolutionary variational inequalities, applications, and a computational procedure, in Pareto Optimality, Game Theory …, Springer (2008), pp. 387–406

    Google Scholar 

  12. S. Dafermos, Traffic equilibrium and variational inequalities. Transp. Sci. 14 (1), 42–54 (1980).

    Article  MathSciNet  Google Scholar 

  13. S. Dafermos, Congested transportation networks and variational inequalities, in Flow Control of Cogested Networks (Springer, Berlin, 1987)

    Google Scholar 

  14. P. Daniele, Dynamic Networks and Evolutionary Variational Inequalities (Edward Elgar, Cheltenham, Northampton, MA, 2006)

    MATH  Google Scholar 

  15. P. Daniele, A. Maugeri, W. Oettli, Time-dependent traffic equilibria. J. Optim. Theory Appl. 103 (3), 543–555 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. P.T. Harker, A variational inequality approach for the determination of oligopolistic market equilibrium. Math. Program. 30, 105–111 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Karamardian, S. Schaible, Seven kinds of monotone maps. J. Optim. Theory Appl. 66, 37–46 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities (SIAM, Philadelphia, 2000)

    Book  MATH  Google Scholar 

  19. J. Lions, G. Stampacchia, Variational inequalities. Commun. Pure Appl. Math. 20 (3), 493–519 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Nagurney, Network Economics: A Variational Inequality Approach (Springer, Berlin, 1993)

    Book  MATH  Google Scholar 

  21. A. Nagurney, D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications (Kluwer Academic, Dordrecht, 1996)

    Book  MATH  Google Scholar 

  22. G. Stampacchia, Variational inequalities, in Theory and Applications of Monotone Operators Proceedings of a Nato Advance Study Inst. Vienice, Italy (1969), pp. 101–192

    Google Scholar 

  23. A. van der Schaft, H. Schumacher, An Introduction to Hybrid Dynamical Systems (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Scott Greenhalgh and Monica-Gabriela Cojocaru would like to thank the referees comments which led to a clearer presentation of this work. Monica-Gabriela Cojocaru graciously acknowledges the support received from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Greenhalgh .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Common Definitions and Theorems for VI, EVI, and PrDE

Definition 13

Some classifications of the mapping F [17]. Given that X is a Hilbert space of arbitrary dimension, \(\mathbb{K} \subset X\) is a non-empty, closed, and convex set, then a mapping \(F: \mathbb{K} \rightarrow X\) is said to be

  1. 1.

    Pseudomonotone on \(\mathbb{K}\) if

    $$\displaystyle{\begin{array}{ll} \langle F(x),y - x\rangle \geq 0 \Rightarrow \langle F(y),y - x\rangle \geq 0&\forall x,y \in \mathbb{K}\end{array} }$$
  2. 2.

    Strictly pseudomonotone on \(\mathbb{K}\) if

    $$\displaystyle{\begin{array}{ll} \langle F(x),y - x\rangle \geq 0 \Rightarrow \langle F(y),y - x\rangle > 0&\forall x\neq y \in \mathbb{K}\end{array} }$$
  3. 3.

    Strongly pseudomonotone of degree α on \(\mathbb{K}\) if for some η > 0,

    $$\displaystyle{\begin{array}{ll} \langle F(x),y - x\rangle \geq 0 \Rightarrow \langle F(y),y - x\rangle \geq \eta \| x - y\|^{\alpha }&\forall x,y \in \mathbb{K}\end{array} }$$

Definition 14

Monotone attractor. Let X be a Hilbert space of arbitrary dimension, \(\mathbb{K} \subset X\) be a non-empty, closed, and convex set, and \(F: \mathbb{K} \rightarrow X\) a Lipschitz continuous mapping. Then

  1. 1.

    A point \(x^{{\ast}}\in \mathbb{K}\) is a local monotone attractor for a PrDE if there exists a neighborhood V of x such that the function ϕ(τ): =  ∥ x(τ) − x  ∥  X is non-increasing with respect to τ for any solution x(τ) of a PrDE starting in V.

  2. 2.

    A point \(x^{{\ast}}\in \mathbb{K}\) is a global monotone attractor for a PrDE if condition X is satisfied for any \(x(\tau ) \in \mathbb{K}\).

Definition 15

Stability of equilibria. Let X be a Hilbert space of arbitrary dimension, \(\mathbb{K} \subset X\) be a non-empty, closed, and convex set, and \(F: \mathbb{K} \rightarrow X\) a Lipschitz continuous mapping. If \(x^{{\ast}}\subset \mathbb{K}\) is an equilibrium of a PrDE, B(x, r) is a ball of radius r centered on \(x: \mathbb{R}^{+} \rightarrow \mathbb{K}\) (a non-equilibrium solution to a PrDE), then

  1. 1.

    The point x is exponentially stable if there exists ε > 0 and μ > 0 such that \(\forall x \in B(x^{{\ast}},\epsilon )\) and \(\forall \tau \geq 0\), we have that ∥ x(τ) − x  ∥  X  ≤ ∥ x(0) − x  ∥  X exp(−μ τ).

  2. 2.

    The point x is a finite-time attractor if there exists ε > 0 such that \(\forall x \in B(x^{{\ast}},\epsilon )\) and \(\forall \tau \geq 0\), there exists T: = T(x) < , where x(τ) = x for all τ ≥ T.

  3. 3.

    The point x is globally exponentially stable, or a global finite-time attractor if X, or respectively Y hold for any \(x \in \mathbb{K}\).

Theorem 2

Let \(\mathbb{K} \subset X\) be a non-empty, closed, and convex set, \(F: \mathbb{K} \rightarrow X\) a Lipschitz continuous mapping, and x an equilibrium of a PrDE.

  1. 1.

    If F is locally (strictly) pseudomonotone around x , then x is a local (strictly) monotone attractor.

  2. 2.

    If F is (strictly) pseudomonotone on \(\mathbb{K}\) , then x is a global (strictly) monotone attractor.

Theorem 3

Let \(\mathbb{K} \subset X\) be a non-empty, closed, and convex set, \(F: \mathbb{K} \rightarrow X\) a Lipschitz continuous mapping, and x an equilibrium of a PrDE.

  1. 1.

    If F is strongly pseudomonotone around x , then x is a locally exponentially stable.

  2. 2.

    If F is strongly pseudomonotone with degree α < 2 around x , then x is a local finite-time attractor.

  3. 3.

    If F is strongly pseudomonotone on \(\mathbb{K}\) , then x is a globally exponentially stable.

  4. 4.

    If F is strongly pseudomonotone with degree α < 2 on \(\mathbb{K}\) ,around x , then x is a global finite-time attractor.

Appendix 2: Strongly Pseudomonotone of Degree α < 2

Here we show that the mapping F from the example in section “A Dynamic Traffic Network Example” is strongly pseudomonotone of degree \(\frac{3} {2}\).

Proof

To begin, recall that

$$\displaystyle{F(x) = (2\sqrt{x_{1 } - x_{1 }^{{\ast}}} + x_{2} - x_{2}^{{\ast}},x_{ 2} - x_{2}^{{\ast}})^{T}}$$

with the constraint set,

$$\displaystyle{\mathbb{K} =\{ x \in L^{2}([0,110], \mathbb{R}^{2})\vert 0 \leq x_{ i} \leq 100,x_{1} + x_{2} =\rho \}.}$$

To show F is strongly pseudomonotone of degree \(\frac{3} {2}\), we use the following identity:

$$\displaystyle{x_{1} - y_{1} = -(x_{2} - y_{2})\ \text{ for all }\ x,y \in \mathbb{K}.}$$

It follows that

$$\displaystyle{\langle F(x)-F(y),x-y\rangle = (2\sqrt{x_{1 } - x_{1 }^{{\ast}}}+x_{2}-2\sqrt{y_{1 } - x_{1 }^{{\ast}}}-y_{2})(x_{1}-y_{1})+(x_{2}-y_{2})(x_{2}-y_{2}).}$$

Equivalently, replacing x 2y 2 through the identity above, we have that

$$\displaystyle{\langle F(x)-F(y),x-y\rangle = (2\sqrt{x_{1 } - x_{1 }^{{\ast}}}-2\sqrt{y_{1 } - x_{1 }^{{\ast}}}-(x_{1}-y_{1}))(x_{1}-y_{1})+(x_{1}-y_{1})(x_{1}-y_{1}),}$$

and

$$\displaystyle{\langle F(x) - F(y),x - y\rangle = (2\sqrt{x_{1 } - x_{1 }^{{\ast}}}- 2\sqrt{y_{1 } - x_{1 }^{{\ast}}})(x_{1} - y_{1}).}$$

Because the square root function is subadditive, it follows that

$$\displaystyle{\langle F(x) - F(y),x - y\rangle \geq (2\sqrt{x_{1 } - y_{1}})(x_{1} - y_{1}) = 2(x_{1} - y_{1})^{\frac{3} {2} }.}$$

Finally, the proof is complete upon noting that

$$\displaystyle{\eta \|x - y\|^{\alpha } =\eta \sqrt{(x_{1 } - y_{1 } )^{2 } - (x_{2 } - y_{2 } )^{2}}^{\alpha } =\eta \sqrt{2}^{\alpha }(x_{ 1} - y_{1})^{\alpha }.}$$

Thus, we have that F is strongly pseudomonotone of degree \(\alpha = \frac{3} {2}\) with \(\eta = \sqrt{2}^{2-\alpha }\).

Appendix 3: Stability of a Hybrid System Non-equilibrium Solution

To demonstrate the stability properties of a hybrid system non-equilibrium solution, consider a mapping F that is strongly pseudomonotone of degree α < 2 with constant η, and the jump rules:

$$\displaystyle{G_{j}(t_{j}^{-},x_{\delta }(t_{ j}^{-})) = P_{ K_{j+1}}(x_{\delta }(t_{j}^{-}) - x_{\delta }^{{\ast}}(t_{ j}^{-}) + x_{\delta }^{{\ast}}(t_{ j}^{-}))}$$

and

$$\displaystyle{H_{j}(\theta _{j}) =\theta ^{j}.}$$

It follows that δ can be selected sufficiently small so that for some t  ∈ [0, T],

$$\displaystyle{\|x_{\delta } - x^{{\ast}}\|_{ L^{2}([t^{{\ast}},T],\mathbb{R}^{q})} <\epsilon \ \text{ for \ any }\ \epsilon > 0.}$$

Proof

The proof here follows the same approach for showing finite time attraction to an equilibrium of a projected differential equation [9, 21]. To begin, let Δ: = Δ m be a uniform division of [0, T] for some fixed m, with division points t j , so that | t j+1t j  |  = δ. Taking t > t j we have that

$$\displaystyle{ \begin{array}{ll} \|x_{\delta }(t) - x^{{\ast}}(t_{j+1})\|_{\mathbb{R}^{q}}^{2-\alpha }&\leq \| x_{\delta }(t_{j}) - x^{{\ast}}(t_{j+1})\|_{\mathbb{R}^{q}}^{2-\alpha }- (2-\alpha ) \frac{\eta }{2}(t - t_{j}). \end{array} }$$
(16)

From the jump rule defined by (15), we have that

$$\displaystyle{ \|x_{\delta }(t_{j}) - x^{{\ast}}(t_{ j+1})\|_{\mathbb{R}^{q}} \leq \| x_{\delta }(t_{j}^{-}) - x^{{\ast}}(t_{ j})\|_{\mathbb{R}^{q}}. }$$
(17)

Since 2 −α > 0 and the power function is increasing we get

$$\displaystyle{ \begin{array}{ll} \|x_{\delta }(t) - x^{{\ast}}(t_{j+1})\|_{\mathbb{R}^{q}}^{2-\alpha }&\leq \| x_{\delta }(t_{j}^{-}) - x^{{\ast}}(t_{j})\|_{\mathbb{R}^{q}}^{2-\alpha }- (2-\alpha ) \frac{\eta }{2}(t - t_{j}),\\ \\ & \leq \| x_{\delta }(t_{j-1}) - x^{{\ast}}(t_{j})\|_{\mathbb{R}^{q}}^{2-\alpha }- (2-\alpha ) \frac{\eta }{2}(t - t_{j-1}). \end{array} }$$
(18)

Continuing in this fashion, we finally arrive at

$$\displaystyle{ \begin{array}{ll} \|x_{\delta }(t) - x^{{\ast}}(t_{j+1})\|_{\mathbb{R}^{q}} & \leq {\bigl (\| x_{\delta }(0^{-}) - x^{{\ast}}(0)\|_{\mathbb{R}^{q}}^{2-\alpha }- (2-\alpha ) \frac{\eta }{2}t\bigr )}^{ \frac{1} {2-\alpha }}.\end{array} }$$
(19)

Thus t is taken such that:

$$\displaystyle{ t^{{\ast}}\geq \frac{1} {(2-\alpha ) \frac{\eta }{2}}\|x_{\delta }(0^{-}) - x^{{\ast}}(0)\|_{ \mathbb{R}^{q}}^{2-\alpha }. }$$
(20)

Thus on the subinterval [t k , t k+1] that contains t , we have necessarily that

$$\displaystyle{ \|x_{\delta }(t) - x^{{\ast}}(t_{ k+1})\|_{\mathbb{R}^{q}} = 0\ \text{ for }\ t \geq t^{{\ast}}. }$$
(21)

Furthermore, since the jump rule maps x (t j ) → x (t j+1) for all j,

$$\displaystyle{ \|x_{\delta }(t) - x^{{\ast}}(t_{ i+1})\|_{\mathbb{R}^{q}} = 0, }$$
(22)

for all t ≥ t on each interval \([t_{i},t_{i+1}]\;\;\forall i > k\). Thus by Lebesgue’s dominated convergence theorem, we have that δ can be selected so that

$$\displaystyle{ \|x_{\delta } - x^{{\ast}}\|_{ L^{2}([t^{{\ast}},T],\mathbb{R}^{q})} \leq \epsilon, }$$
(23)

for any ε > 0.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Greenhalgh, S., Cojocaru, MG. (2017). Non-equilibrium Solutions of Dynamic Networks: A Hybrid System Approach. In: Daras, N., Rassias, T. (eds) Operations Research, Engineering, and Cyber Security. Springer Optimization and Its Applications, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-51500-7_13

Download citation

Publish with us

Policies and ethics