A Survey of Recent Inequalities for Relative Operator Entropy

  • Silvestru Sever DragomirEmail author
Part of the Springer Optimization and Its Applications book series (SOIA, volume 113)


The concepts of relative operator entropy and operator entropy play an important role in different subjects, such as statistical mechanics, information theory, dynamical systems and ergodic theory, biology, economics, human and social sciences. They are closely related to the problem of the quantification of entanglement, the distinguishability of quantum states and to thermodynamical ideas. In this paper we survey some recent inequalities obtained by the author for the relative operator entropy \(S\left (\cdot \vert \cdot \right ),\) for positive invertible operators A and B in general, and, in particular when they satisfy the boundedness condition mA ≤ B ≤ MA for some m,  M with 0 < m < M. Natural applications for the operator entropy \(\eta \left (\cdot \right )\) are provided. In the end, some trace inequalities for trace class operators A and B that satisfy the normality condition \(\mathop{\mathrm{tr}}\left (A\right ) =\mathop{ \mathrm{tr}}\ \left (B\right ) = 1\) are also given.


Relative operator entropy Operator entropy Young’s inequality Convex functions Operator inequalities Means 


  1. 1.
    S.S. Dragomir, Bounds for the normalized Jensen functional. Bull. Aust. Math. Soc. 74 (3), 417–478 (2006)CrossRefGoogle Scholar
  2. 2.
    S.S. Dragomir, A note on Young’s inequality. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. doi: 10.1007/s13398-016-0300-8,
  3. 3.
    S.S. Dragomir, A note on new refinements and reverses of Young’s inequality. Trans. J. Math. Mech. 8 (1), 45–49 (2016) []
  4. 4.
    S.S. Dragomir, Some inequalities for relative operator entropy, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 145. [}]
  5. 5.
    S.S. Dragomir, Further inequalities for relative operator entropy. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 160. [}]
  6. 6.
    J.I. Fujii, E. Kamei, Uhlmann’s interpolational method for operator means. Math. Jpn. 34 (4), 541–547 (1989)MathSciNetzbMATHGoogle Scholar
  7. 7.
    J.I. Fujii, E. Kamei, Relative operator entropy in noncommutative information theory. Math. Jpn. 34 (3), 341–348 (1989)MathSciNetzbMATHGoogle Scholar
  8. 8.
    S. Furuichi, On refined Young inequalities and reverse inequalities. J. Math. Inequal. 5, 21–31 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    S. Furuichi, Refined Young inequalities with Specht’s ratio. J. Egypt. Math. Soc. 20, 46–49 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    S. Furuichi, Precise estimates of bounds on relative operator entropies. Math. Inequal. Appl. 18, 869–877 (2015)MathSciNetzbMATHGoogle Scholar
  11. 11.
    S. Furuichi, N. Minculete, Alternative reverse inequalities for Young’s inequality. J. Math Inequal. 5 (4), (2011) 595–600MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    T. Furuta, J.M. Hot, J. Pečarić, Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert space. Monographs in Inequalities, vol. 1 (Element, Zagreb, 2005), pp. xiv+262, pp.+loose errata. ISBN: 953-197-572-8Google Scholar
  13. 13.
    I.H. Kim, Operator extension of strong subadditivity of entropy. J. Math. Phys. 53, 122204 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrix. J. Math. Anal. Appl. 361, 262–269 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    F. Kittaneh, Y. Manasrah, Reverse Young and Heinz inequalities for matrices. Lin. Multilin. Alg. 59, 1031–1037 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    P. Kluza, M. Niezgoda, Inequalities for relative operator entropies. Electron. J. Lin. Alg. 27, 851–864 (2014). Art. 1066Google Scholar
  17. 17.
    F. Kubo, T. Ando, Means of positive operators. Math. Ann. 264, 205–224 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    W. Liao, J. Wu, J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant. Taiwan. J. Math. 19 (2), 467–479 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    G.V. Milovanović, M.T. Rassias, Analytic Number Theory, Approximation Theory, and Special Functions (Springer, New York, 2014)CrossRefzbMATHGoogle Scholar
  20. 20.
    M.S. Moslehian, F. Mirzapour, A. Morassaei, Operator entropy inequalities. Colloq. Math. 130, 159–168 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M. Nakamura, H. Umegaki, A note on the entropy for operator algebras. Proc. Jpn. Acad. 37, 149–154 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    I. Nikoufar, On operator inequalities of some relative operator entropies. Adv. Math. 259, 376–383 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    W. Specht, Zer Theorie der elementaren Mittel. Math. Z. 74, 91–98 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    M. Tominaga, Specht’s ratio in the Young inequality. Sci. Math. Jpn. 55, 583–588 (2002)MathSciNetzbMATHGoogle Scholar
  25. 25.
    A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys. 54 (1), 21–32 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    G. Zuo, G. Shi, M. Fujii, Refined Young inequality with Kantorovich constant. J. Math. Inequal. 5, 551–556 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Mathematics, College of Engineering & ScienceVictoria UniversityMelbourneAustralia
  2. 2.DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science and Applied MathematicsUniversity of WitwatersrandJohannesburgSouth Africa

Personalised recommendations