Advertisement

Complementarity and Variational Inequalities in Electronics

  • Khalid AddiEmail author
  • Daniel Goeleven
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 113)

Abstract

The purpose of this chapter is to review and describe the main mathematical models applicable to the study of electrical networks involving devices like diodes whose Ampere–Volt characteristics are set-valued graphs. The mathematical models in question are related to complementarity problems, variational inequalities, and non-regular dynamical systems.

Keywords

Variational Inequality Complementarity Problem Differential Inclusion Maximal Monotone Electrical Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. Acary, B. Brogliato, Numerical methods for nonsmooth dynamical systems, in Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35 (Springer, Berlin, 2008)Google Scholar
  2. 2.
    V. Acary, B. Brogliato, D. Goeleven, Higher order Moreau’s sweeping process. Mathematical formulation and numerical simulation. Math. Program. A 113 (1), 133–217 (2008)zbMATHGoogle Scholar
  3. 3.
    V. Acary, O. Bonnefon, B. Brogliato, Time-stepping numerical simulation of switched circuits with the nonsmooth dynamical systems approach. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29 (7), 1042–1055 (2010)CrossRefGoogle Scholar
  4. 4.
    V. Acary, O. Bonnefon, B. Brogliato, Nonsmooth Modeling and Simulation for Switched Circuits. Lecture Notes in Electrical Engineering, vol. 69 (Springer, Dordrecht, 2011)Google Scholar
  5. 5.
    K. Addi, S. Adly, B. Brogliato, D. Goeleven, A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics. Nonlinear Anal. Ser. C Hybrid Syst. Appl. 1, 30–43 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    K. Addi, B. Brogliato, D. Goeleven, A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems. Appl. Electron. Math. Program. A 126 (1), 31–67 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    K. Addi, Z. Despotovic, D. Goeleven, A. Rodic, Modelling and analysis of a non-regular electronic circuit via a variational inequality formulation. Appl. Math. Model. 35, 2172–2184 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    S. Adly, D. Goeleven, B.K. Le, Stability analysis and attractivity results of a DC-DC Buck converter. Set Valued Var. Anal. 20 (3), 331–353 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J.P. Aubin, A. Cellina, Differential Inclusions (Springer, Berlin, 1984)CrossRefzbMATHGoogle Scholar
  10. 10.
    U.A. Bakshi, A.P. Godse, Electronic Devices and Circuits (Technical Publications, Pune, 2008)Google Scholar
  11. 11.
    A. Bemporad, M.K. Camlibel, W.P.M.H. Heemels, A.J. van der Schaft, J.M. Schumacher, B. de Schutter, Further switched systems, in Handbook of Hybrid Systems Control, ed. by F. Lamnabhi-Lagarrigue, J. Lunze, Theory, Tools, Applications. Cambridge University Press, Cambridge (2009)Google Scholar
  12. 12.
    H. Brézis, Opérateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert (North-Holland/American Elsevier, Amsterdam/New York, 1972)Google Scholar
  13. 13.
    H. Brézis, Problèmes unilatéraux. Journal de Mathématiques Pures et Appliquées 51, 1–168 (1972)MathSciNetzbMATHGoogle Scholar
  14. 14.
    B. Brogliato, Some perspectives on the analysis and control of complementarity systems. IEEE Trans. Autom. Control 48, 918–935 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    B. Brogliato, Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings. Syst. Control Lett. 51, 343–353 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    B. Brogliato, D. Goeleven, The Krakovskii-LaSalle invariance principle for a class of unilateral dynamical systems. Math. Control Signals Syst. 17, 57–76 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    B. Brogliato, D. Goeleven, Well-posedness, stability and invariance results for a class of multivalued Lur’e dynamical systems. Nonlinear Anal. Theory Methods Appl. 74, 195–212 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    B. Brogliato, D. Goeleven, Existence, uniqueness of solutions and stability of nonsmooth multivalued Lur’e dynamical systems. J. Convex Anal. 20, 881–900 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    B. Brogliato, R. Lozano, B.M. Maschke, O. Egeland, Dissipative Systems Analysis and Control. Springer CCE Series (Springer, London, 2006)zbMATHGoogle Scholar
  20. 20.
    B. Brogliato, A. Daniilidis, C. Lemarchal, C. Acary, On the equivalence between complementarity systems, projected systems and unilateral differential inclusions. Syst. Control Lett. 55, 45–51 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    M.K. Camlibel, J.M. Schumacher, Existence and uniqueness of solutions for a class of piecewise linear systems. Linear Algebra Appl. 147–184 (2002)Google Scholar
  22. 22.
    M.K. Camlibel, J.M. Schumacher, Existence and uniqueness of solutions for a class of piecewise linear dynamical systems. Linear Algebra Appl. 351–352, 147–184 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    M.K. Camlibel, J.M. Schumacher, Linear passive systems and maximal monotone mappings. Math. Program. (2015, accepted for publication)Google Scholar
  24. 24.
    M.K. Camlibel, W.P.M.H. Heemels, J.M. Schumacher, Consistency of a time-stepping method for a class of piecewise-linear networks. IEEE Trans. Circuits Syst. I. 49, 349–357 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    M.K. Camlibel, W.P.M.H. Heemels, H. Schumacher, On linear passive complementarity systems. Eur. J. Control. 8, 220–237 (2002)CrossRefzbMATHGoogle Scholar
  26. 26.
    M.K. Camlibel, W.P.M.H. Heemels, J.M. Schumacher, On linear passive complementarity systems. Eur. J. Control 8 (3), 220–237 (2002)CrossRefzbMATHGoogle Scholar
  27. 27.
    M.K. Camlibel, L. Iannelli, F. Vasca, Passivity and complementarity. Math. Program. 145 (1–2), 531–563 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    R.W. Cottle, J.S. Pang, R.E. Stone, The Linear Complementarity Problem (Academic, New York, 1992)zbMATHGoogle Scholar
  29. 29.
    F.H. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1983)zbMATHGoogle Scholar
  30. 30.
    P. Denoyelle, V. Acary, The non-smooth approach applied to simulating integrated circuits and power electronics. Evolution of electronic circuit simulators towards fast-SPICE performance. INRIA Technical Report RT-0321 (2006)Google Scholar
  31. 31.
    G. Duvaut, J.L. Lions, Les Inéquations en Mécanique et en Physique (Dunod, Paris, 1972)zbMATHGoogle Scholar
  32. 32.
    F. Facchinei, J.-S. Pang, Finite Dimensional Variational Inequalities and Complementarity Problems (Springer, Berlin, 2003)zbMATHGoogle Scholar
  33. 33.
    C. Georgescu, B. Brogliato, V. Acary, Switching, relay and complementarity systems: a tutorial on their well-posedness and relationships. Phys. D. Dyn. Bifurcations Nonsmooth Syst. 241 (22), 1985–2002 (2012)MathSciNetGoogle Scholar
  34. 34.
    G. Goeleven, An existence and uniqueness result for a linear mixed variational inequality arising in electrical circuits with transistors. J. Optim. Theory Appl. 138, 397–406 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    D. Goeleven, B. Brogliato, Stability and instability matrices for linear evolution variational inequalities. IEEE Trans. Autom. Control 49, 521–534 (2004)MathSciNetCrossRefGoogle Scholar
  36. 36.
    D. Goeleven, D. Motreanu, On the solvability of variational inequalities via relaxed complementarity problems. Commun. Appl. Anal. 4, 533–546 (2000)MathSciNetzbMATHGoogle Scholar
  37. 37.
    D. Goeleven, D. Motreanu, Variational and Hemivariational Inequalities – Theory, Methods and Applications. Vol. 2: Unilateral Problems and Unilateral Mechanics (Kluwer Academic, Boston, 2003)Google Scholar
  38. 38.
    D. Goeleven, D. Motreanu, Y. Dumont, M. Rochdi, Variational and Hemivariational Inequalities – Theory, Methods and Applications. Vol. 1: Unilateral Analysis and Unilateral Mechanics (Kluwer Academic, Boston, 2003)Google Scholar
  39. 39.
    W.P.M.H. Heemels, J.M. Schumacher, S. Weiland, Linear complementarity systems. SIAM J. Appl. Math. 60, 1234–1269 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    W.P.M.H. Heemels, M.K. Camlibel, J.M. Schumacher, On the dynamic analysis of piecewise-linear networks. IEEE Trans. Circuits Syst. I 49, 315–327 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    W.P.M.H. Heemels, M.K. Camlibel, A.J. Van der Schaft, J.M. Schumacher, Well-posedness of hybrid systems, in Control Systems, Robotics and Automation, ed. by H. Unbehauen. Theme 6.43 of Encyclopedia of Life Support Systems (Eolss, Oxford, 2004)Google Scholar
  42. 42.
    W.P.M.H. Heemels, M.K. Camlibel, J.M. Schumacher, B. Brogliato, Observer-based control of linear complementarity systems. Int. J. Robust Nonlinear Control 21 (10), 1193–1218 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    J.B. Hiriart-Urruty, C. Lemaréchal, Fundamentals of Convex Analysis. Springer Grundlehren Text Editions (Springer, Heidelberg, 2001)CrossRefzbMATHGoogle Scholar
  44. 44.
    G. Isac, Complementarity Problems. Lecture Notes in Mathematics, vol. 1528 (Springer, Berlin, 1992)Google Scholar
  45. 45.
    A. Jofré, R.T. Rockafellar, R.J.-B. Wets, Variational inequalities and economic equilibrium. Math. Oper. Res. 32, 32–50 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    R.E. Kalman, Lyapunov functions for the problem of Lur’e in automatic control. Proc. Natl. Acad. Sci. 49, 201–205 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    I.V. Konnov, E.O. Volotskaya, Mixed variational inequalities and economic equilibrium problems. J. Appl. Math. 6, 289–314 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    D. Leenaerts, W.M.G. van Bokhoven, Piecewise Linear Modeling and Analysis (Kluwer Academic, Norwell, MA, 1998)CrossRefzbMATHGoogle Scholar
  49. 49.
    J. Millman, C.C. Halkias, Integrated Electronics (McGraw-Hill Kogakusha, Sydney, 1985)Google Scholar
  50. 50.
    Y. Murakami, A Method for the Formulation and solution of circuits composed of switches and linear RLC networks. IEEE Trans. Circuits Syst. I 49, 315–327 (2002)CrossRefGoogle Scholar
  51. 51.
    J.J. Moreau, La Notion du Surpotentiel et les Liaisons Unilatérales on Elastostatique. C.R. Acad. Sci. Paris 167A, 954–957 (1968)Google Scholar
  52. 52.
    J.J. Moreau, Nonsmooth mechanics and applications, in CISM, ed. by P.D. Panagiotopoulos, vol. 302 (Springer, Wien, 1988)Google Scholar
  53. 53.
    K.G. Murty, Linear Complementarity. Linear and Nonlinear Programming (Hederman, Berlin, 1998)Google Scholar
  54. 54.
    P.D. Panagiotopoulos, Non-convex superpotentials in the sense of F.H. Clarke and applications. Mech. Res. Comm. 8, 335–340 (1981)Google Scholar
  55. 55.
    P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions (Birkhaüser, Basel, 1985)CrossRefzbMATHGoogle Scholar
  56. 56.
    D. Pascali, S. Sburlan, Nonlinear Mappings of Monotone Type (Sijthoff and Noordhoff International Publishers, Amsterdam, 1978)CrossRefzbMATHGoogle Scholar
  57. 57.
    V.M. Popov, Absolute stability of nonlinear systems of automatic. Control Autom. Remote Control 22, 857–875 (1962)MathSciNetzbMATHGoogle Scholar
  58. 58.
    A. Rantzer, On the Kalman-Yakubovich-Popov Lemma. Syst. Control Lett. 28, 7–10 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)CrossRefzbMATHGoogle Scholar
  60. 60.
    M. Vidyasagar, Nonlinear Systems Analysis. Prentice Hall International Editions (Prentice Hall, Princeton, NJ, 1993)Google Scholar
  61. 61.
    V.A. Yakubovich, Solution of certain matrix inequalities in the stability theory of nonlinear control systems. Dokl. Akad. Nauk. SSSR. 143, 1304–1307 (1962)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of La Reunion, PIMENTSainte-ClotildeFrance

Personalised recommendations