Skip to main content

Comparison of the Phase-Field Models to Predict the Recrystallization Kinetics

  • Conference paper
  • First Online:
TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 4460 Accesses

Abstract

Continuous models for the prediction of the grain growth and recrystallization kinetics can be roughly classified into two methods. One method is multi-phase-field approaches. The second method is the phase-field model of Kobayashi, Warren and Carter (KWC) with two or three order parameters that make the model more efficient and more promising for the description of polycrystals. The present work proposes an extension to the KWC model to incorporate the recrystallization process by means of an additional order parameter for recrystallized grains. The results of the simulation of the grain growth and recrystallization process obtained by this extended KWC model are compared to existing results in the literature obtained by the original KWC phase-field model. The procedure of the parameter estimation for a simple isotropic case (no orientation dependence of the surface energy and kinetic parameters) is suggested. The ability of the model to describe the grain boundaries with low misorientation and to incorporate the grain boundary diffusion with the impurity segregation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D. Fan, L.Q. Chen, Acta Mater. 45, 611–622 (1997)

    Article  Google Scholar 

  2. L.Q. Chen, W. Yang, Phys. Rev. B 50, 15752–15756 (1994)

    Article  Google Scholar 

  3. C.E. Krill, L.Q. Chen, Acta Mater. 50, 3057–3073 (2002)

    Google Scholar 

  4. A. Kazaryan, Y. Wang, S.A. Dregia, B.R. Patton, Acta Mater. 50, 2491–2502 (2002)

    Article  Google Scholar 

  5. Y. Suwa, Y. Saito, Mater. Trans. 44, 2245–2251 (2003)

    Article  Google Scholar 

  6. Y. Suwa, Y. Saito, H. Onodera, Comput. Mater. Sci. 40, 40–50 (2007)

    Article  Google Scholar 

  7. Y. Suwa, Y. Saito, H. Onodera, Mater. Trans. 49, 704–709 (2008)

    Article  Google Scholar 

  8. N. Moelans, B. Blanpain, P. Wollants, Phys. Rev. Lett. 101, 025502 (2008)

    Article  Google Scholar 

  9. N. Moelans, A. Codfrey, Y. Zhang, D.J. Jensen, Phys. Rev. B 88, 054103 (2013)

    Article  Google Scholar 

  10. S.G. Kim, D.I. Kim, W.T. Kim, Y.B. Park, Phys. Rev. E 74, 061605 (2006)

    Article  Google Scholar 

  11. I. Steinbach, F. Pezzolla, Phys. D 134, 385–393 (1999)

    Article  Google Scholar 

  12. S.G. Kim, W.T. Kim, T. Suzuki, M. Ode, J. Crys, Growth 261, 135–158 (2004)

    Article  Google Scholar 

  13. J.A. Warren, W.C. Carter, R. Kobayashi, Phys. A 261, 159–166 (1998)

    Article  Google Scholar 

  14. R. Kobayashi, J.A. Warren, W.C. Carter, Phys. D 140, 141–150 (2000)

    Article  Google Scholar 

  15. J.A. Warren, R. Kobayashi, A.E. Lobkovsky, W.C. Carter, Acta Mater. 51, 6035–6058 (2003)

    Article  Google Scholar 

  16. T. Takaki, A. Yamanaka, Y. Tomita, APCOM07 in Conjunction with EPMESC XI, December 3–6, Kyoto, Japan (2007)

    Google Scholar 

  17. T. Takaki, T. Hirouchi, Y. Hisakuni, A. Yamanaka, Y. Tomita, Mater. Trans. 49(11), 2559–2565 (2008)

    Article  Google Scholar 

  18. T. Takaki, A. Yamanaka, Y. Tomita, Adv. Struct. Mater. 64, 441–459 (2015)

    Google Scholar 

  19. E. Miyoshi, T. Takaki, Comput. Mater. Sci. 112(A) 44–51 (2016)

    Google Scholar 

  20. E. Miyoshi, T. Takaki, Comput. Mater. Sci. 120, 77–83 (2016)

    Article  Google Scholar 

  21. T. Takaki, A. Yamanaka, Y. Higa, Y. Tomita, J. Comput. Aided Mater. Des. 14, 75–84 (2007)

    Article  Google Scholar 

  22. T. Takaki, A. Yamanaka, Y. Tomita, Mater. Sci. Forum 558–559, 1195–1200 (2007)

    Google Scholar 

  23. R.D. Doherty et al., Mater. Sci. Eng. A 238, 219–274 (1997)

    Article  Google Scholar 

  24. F.J. Humphreys, Acta Mater. 45, 4231–4240 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kundin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Kundin, J. (2017). Comparison of the Phase-Field Models to Predict the Recrystallization Kinetics. In: TMS, T. (eds) TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51493-2_35

Download citation

Publish with us

Policies and ethics